phan tich da thuc thanh nhan tu (x^2+y^2+z^2)^2- 2(x^4+y^4+z^4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
4x(x+y)(x+y+z)(x+z)+(yz)^2
=(2x(x+y+z))(2(x+y)(x+z)+(yz)^2
=(2x^2+2xy+2xz)(2x^2+2xy+2xz+2yz)+(yz)^2
Đặt t=C
=(t-yz)(t+yz)-(yz)^2
=t^2-(yz)^2+(yz)^2=t^2=(2x^2+2xy+2xz+yz)^2
=
Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3
= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3
Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0
=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3
= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )
= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )