K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

a: \(4x^3+12=120\)

=>\(4x^3=108\)

=>\(x^3=27=3^3\)

=>x=3

b: \(\left(x-4\right)^2=64\)

=>\(\left[{}\begin{matrix}x-4=8\\x-4=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-4\end{matrix}\right.\)

c: (x+1)^3-2=5^2

=>\(\left(x+1\right)^3=25+2=27\)

=>x+1=3

=>x=2

d: 136-(x+5)^2=100

=>(x+5)^2=36

=>\(\left[{}\begin{matrix}x+5=6\\x+5=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-11\end{matrix}\right.\)

e: \(4^x=16\)

=>\(4^x=4^2\)

=>x=2

f: \(7^x\cdot3-147=0\)

=>\(3\cdot7^x=147\)

=>\(7^x=49\)

=>x=2

g: \(2^{x+3}-15=17\)

=>\(2^{x+3}=32\)

=>x+3=5

=>x=2

h: \(5^{2x-4}\cdot4=10^2\)

=>\(5^{2x-4}=\dfrac{100}{4}=25\)

=>2x-4=2

=>2x=6

=>x=3

i: (32-4x)(7-x)=0

=>(4x-32)(x-7)=0

=>4(x-8)*(x-7)=0

=>(x-8)(x-7)=0

=>\(\left[{}\begin{matrix}x-8=0\\x-7=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=8\\x=7\end{matrix}\right.\)

k: (8-x)(10-2x)=0

=>(x-8)(x-5)=0

=>\(\left[{}\begin{matrix}x-8=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=5\end{matrix}\right.\)

m: \(3^x+3^{x+1}=108\)

=>\(3^x+3^x\cdot3=108\)

=>\(4\cdot3^x=108\)

=>\(3^x=27\)

=>x=3

n: \(5^{x+2}+5^{x+1}=750\)

=>\(5^x\cdot25+5^x\cdot5=750\)

=>\(5^x\cdot30=750\)

=>\(5^x=25\)

=>x=2

16 tháng 7 2021

a) bằng 9 nha bạn

b) thì mik ko bik làm.

Đúng thì bạn tim giúp mik nha bạn. Thx bạn

 

1 tháng 12 2018

\(N=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\)

=>   \(3N=1+\frac{1}{3}+...+\frac{1}{3^{2017}}\)

=>  \(3N-N=\left(1+\frac{1}{3}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)\)

<=>   \(2N=1-\frac{1}{3^{2018}}< 1\)

<=>  \(N< \frac{1}{2}\)

=> dpcm

29 tháng 3 2022

Ai gait hộ mình với . Mai mình phải nộp bài r.huhuhu

15 tháng 3 2019

1x2x3x...2018x2019 - 1x2x3x..2018 - 1x2x3x4x...x2017x20182 

= 1x2x3x...x2018x(2019 - 1 - 2018)

= 1x2x3x...x2018x0

= 0

9 tháng 10 2018

\(C=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2017+1\)

\(=\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)2018-\left(2018^{2019}+2018^{2018}+...+2018\right)-1\)

\(=\left(2018^{2020}+2018^{2019}+...+2018^3+2018^2\right)-\left(2018^{2019}+2018^{2018}+...+2018^2+2018\right)+1\)\(=2018^{2020}-2018+1\)

\(=2018^{2020}-2017\)