Cho A=\( \frac{7n+6}{6n+7}\) với n \(\in\) Z
a,Tính giá trị của A tại n=0;n=-1
b, Tìm n \(\in\) Z sao cho A có giá trị nguyên
c, Tìm n \(\in\) Z sao cho A đạt GTNN, GTLN
d. Tìm n \(\in\) Z sao cho A là một phân số rút gọn được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước nguyên tố chung của 7n+6 và 6n+7
=>7n+6 ; d
6n+7 :d ( mình viết dấu : thay cho dấu chia hết nha)
=>6(7n+6):d
7(6n+7):d
=>42n+36:d
42n+49:d
=>(42n+49)-(42n+36):d
=>13 :d
=>d=13
Để phân số trên còn rút gọn được nữa thì 7n+6 :13
=>7n+6-13 : 13
=>7n-7:13
=>7(n-1):13
Vì (7;13)=1 nên n-1:13
=>n=13k+1 ( k\(\in\) Z)
b) Để A tối giản thì 7n+6 ko chia hết cho 13
=> \(n\ne13k+1\left(k\in Z\right)\)
a: Khi n=0 thì \(A=\dfrac{7\cdot0+6}{6\cdot0+7}=\dfrac{6}{7}\)
Khi n=-1 thì \(A=\dfrac{-7+6}{-6+7}=-1\)
b: Để A là số nguyên thì 42n+36 chia hết cho 6n+7
=>42n+49-13 chia hết cho 6n+7
=>-13 chia hết cho 6n+7
\(\Leftrightarrow6n+7\in\left\{1;-1;13;-13\right\}\)
hay \(n\in\left\{-1;-\dfrac{4}{3};1;-\dfrac{10}{3}\right\}\)
ban tham khảo nhé;
18n + 3 = 7 3n + 1 3 6n + 1 rõ dàng các số 3 và 7 ; 3n + 1 và 6n + 1 là các số đôi một nguyên tố cùng nhau. Vì vậy , để phân số 21n + 7 18n + 3 là phân số tối giản thì 6n + 1 không chia hết cho 7 Từ đó suy ra : n = - 7k + 1 ( k ∈ Z )
a, đk : n khác 2
b, Với n = 0 => \(A=\dfrac{0+4}{0-2}=\dfrac{4}{-2}=-2\)
Với n = -2 => \(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Với n = 4 => \(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c, \(A=\dfrac{n+4}{n-2}=\dfrac{n-2+6}{n-2}=1+\dfrac{6}{n-2}\Rightarrow n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
a: Để phân số A có nghĩa thì n-2<>0
hay n<>2
b: Thay n=0 vào A, ta được:
\(A=\dfrac{0+4}{0-2}=-2\)
Thay n=-2 vào A, ta được:
\(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Thay n=4 vào A, ta được:
\(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c: Để A là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)