K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath

3 tháng 11 2018

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\) Do \(xyz=1\Rightarrow abc=1\)

Ta có \(M=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{a^3+c^3+1}\)

Cần chứng minh \(a^3+b^3\ge ab\left(a+b\right)\) \(BĐT\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\left(true\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Tương tự cộng lại ra ĐPCM

22 tháng 11 2019

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath

22 tháng 8 2020

Dat \(\left(a,b,c\right)=\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\left(a,b,c>0,abc=1\right)\)

Ta co \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{3}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}\left(1\right)\)

BDT phu \(1+\frac{3}{ab+bc+ca}\ge\frac{6}{a+b+c}\left(2\right)\)

Do (1) nen (2) tuong duong voi

\(1+\frac{9}{\left(a+b+c\right)^2}\ge\frac{6}{a+b+c}\Leftrightarrow\left(1-\frac{3}{a+b+c}\right)^2\ge0\left(dung\right)\)

Suy ra (2) duoc chung minh

Do \(abc=1\Rightarrow\hept{\begin{cases}ab=\frac{1}{xy}=\frac{xyz}{xy}=z\\bc=x\\ca=y\end{cases}}\)

nen (2) tuong duong \(1+\frac{3}{x+y+z}\ge\frac{6}{xy+yz+zx}\)

=> \(\frac{1}{x+y+z}\ge\frac{1}{3}\left(\frac{6}{x+y+z}-1\right)=\frac{2}{x+y+z}-\frac{1}{3}\)

Suy ra \(P\ge\frac{2}{x+y+z}-\frac{1}{3}-\frac{2}{x+y+z}=-\frac{1}{3}\)

Dau = xay ra khi x=y=z=1

19 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}=\frac{\sqrt{3xy}}{xy}=\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)=\sqrt{3}\cdot\left(\frac{\sqrt{x}}{\sqrt{xyz}}+\frac{\sqrt{y}}{\sqrt{xyz}}+\frac{\sqrt{z}}{\sqrt{xyz}}\right)\)

\(=\sqrt{3}\cdot\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\ge\sqrt{3}\cdot\frac{3\sqrt[3]{\sqrt{xyz}}}{1}=3\sqrt{3}\)

Khi \(x=y=z=1\)

22 tháng 5 2020

Ta có: \(x^2\left(y+z\right)\ge x^2.2\sqrt{yz}=2\sqrt{x^4}.\sqrt{\frac{1}{x}}=2x\sqrt{x}\)(Áp dụng BĐT Cô - si cho 2 số dương y,z và sử dụng giả thiết xyz = 1)

Hoàn toàn tương tự: \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2\left(x+y\right)\ge2z\sqrt{z}\)

Do đó \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)

\(\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(a=x\sqrt{x}+2y\sqrt{y}\)\(b=y\sqrt{y}+2z\sqrt{z}\)\(c=z\sqrt{z}+2x\sqrt{x}\)

Suy ra: \(x\sqrt{x}=\frac{4c+a-2b}{9}\)\(y\sqrt{y}=\frac{4a+b-2c}{9}\)\(z\sqrt{z}=\frac{4b+c-2a}{9}\)

Do đó \(P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}\right)\)

\(=\frac{2}{9}\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\)

\(\ge\frac{2}{9}\left[4.3\sqrt[3]{\frac{c}{b}.\frac{a}{c}.\frac{b}{a}}+3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}-6\right]\)(Áp dụng BĐT Cô - si cho 3 số dương)

\(=\frac{2}{9}\left[4.3+3-6\right]=2\)

Vậy \(P\ge2\)

Đẳng thức xảy ra khi x = y = z = 1

14 tháng 8 2020

\(P=\frac{9}{1-2\left(xy+yz+xz\right)}+\frac{2}{xyz}=\frac{9}{\left(x+y+z\right)^2-2\left(xy+yz+xz\right)}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{9}{x^2+y^2+z^2}+\frac{6\sqrt[3]{xyz}}{xyz}\ge\frac{9}{x^2+y^2+z^2}+\frac{18}{3\sqrt[3]{x^2y^2z^2}}\)

\(\ge\frac{9}{x^2+y^2+z^2}+\frac{36}{2\left(xy+yx+xz\right)}\ge9\left(\frac{1}{\left(x+y+z\right)^2}+\frac{2^2}{2\left(xy+yz=xz\right)}\right)\)

\(\ge\frac{81}{\left(x+y+z\right)^2=81}\)

Dấu = xảy ra khi x =  y = z = 1/3