K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

diện tích hình chữ nhật là : 12*24=288(cm2)

chiều cao bằng chiều rộng

chiều dài bằng đáy hình tam giác

Diện tích hình tam giác là: 288:2=144(cm2)

Đáp số : 144 cm2

 

15 tháng 12 2021

Bạn nhầm bài rồi

28 tháng 2 2019

thôi bạn ơi tìm google là:" giải vở bài tập toán lớp 5 tập 2 là xong, vô tìm tiết đó" OK. Thời ni nhiều người làm như rứa lắm bạn ạ.!!!!

Thank you . kết bạn với mình nhé 

​​

ka ka    dịch chữ gì bên trái đi hay hay....

đáp án là : 

- ka ka

4 tháng 9 2018

Bài tập cuối tuần Toán lớp 3 Tuần 29 có đáp án (Đề 2) | Đề kiểm tra cuối tuần Toán 3 có đáp án

AF = 2 AD => AF = 2 × 6 = 12cm và DF = AD = 6cm

BE = 2 BC => BE = 2 × 6 = 12cm và CE = BC = 6cm

Suy ra EFDC là hình chữ nhật do có CD = EF và DF = CE và góc FDC và góc DCE là góc vuông

Diện tích hình chữ nhật ABCD bằng:

  AB × AD = 2 × 6 = 12 (cm2)

Diện tích hình chữ nhật DCEF là:

  DC × DF = 2 × 6 = 12 (cm2)

Diện tích hình chữ nhật ABEF là :

  AB × AF = 2 × 12 = 24 (cm2)

    Đáp số: SABCD = SDCEF = 12 cm2; SABEF = 24cm2

19 tháng 10 2021

\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=a\sqrt{5}\)

\(\left|\overrightarrow{BC}-\overrightarrow{OD}\right|=\left|\overrightarrow{AD}+\overrightarrow{DO}\right|=AO=\dfrac{a\sqrt{5}}{2}\)

1: Ta có:ABCD là hình chữ nhật

nên AB=CD;AD=BC

2: Xét tứ giác ABCD có 

AB=CD

AD=BC

Do đó: ABCD là hình bình hành

Xét ΔADE và ΔCBF có 

\(\widehat{D}=\widehat{B}\)

AD=CB

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: \(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{AEC}=\widehat{CFA}\)

Xét tứ giác AECF có

\(\widehat{AEC}=\widehat{CFA}\)

\(\widehat{FAE}=\widehat{FCE}\)

Do đó: AECF là hình bình hành

Suy ra: AE//CF

23 tháng 12 2017

Đáp án C

a: Xét ΔODC có D''C''//DC

nên \(\dfrac{D''C''}{DC}=\dfrac{OD''}{OD}=\dfrac{OC''}{OC}=\dfrac{3}{9}=\dfrac{1}{3}\)(1)

Xét ΔOAB có A''B"//AB

nên \(\dfrac{A"B"}{AB}=\dfrac{OA"}{OA}=\dfrac{OB"}{OB}=\dfrac{3}{9}=\dfrac{1}{3}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{OD"}{OD}=\dfrac{OC"}{OC}=\dfrac{OA"}{OA}=\dfrac{OB"}{OB}\)

mà A"A, B"B, C"C, D"D đều đi qua điểm O

nên hai hình hộp chữ nhật A"B"C"D" và ABCD đồng dạng phối cảnh với nhau

b: ta có: A'B'=C'D'=3cm

A"B"=C"D"=3cm

Do đó: A"B"=C"D"=A'B'=C'D'(3)

ta có: A'D'=B'C'=2cm

A"D"=B"C"=2cm

Do đó: A'D'=B'C'=A"D"=B"C"(4)

Từ (3),(4) suy ra hai hình hộp chữ nhật A"B"C"D" và A'B'C'D' bằng nhau