Cho tam giác ABC : ( mị miêu tả thui nha, ko bt vẽ :v)
Kẻ 1 hình tam giác cân ấy ak.
Qua điểm A kẻ đường thẳng xy song song với BC
a) So sánh góc xAB và góc ABC
góc yAC và ACB
b) Tính góc ABC + BCA + CAB = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu tam giác là t/g nhé
a) t/g ABC vuông tại A có: ACB + ABC = 90o
=> 36o + ABC = 90o
=> ABC = 90o - 36o = 54o
b) Xét t/g ABD và t/g EBD có:
AB = BE (gt)
ABD = EBD ( vì BD là phân giác của ABE)
BD là cạnh chung
Do đó, t/g ABD = t/g EBD (c.g.c) (đpcm)
c) Xét t/g ABD vuông tại A và t/g BAK vuông tại B có:
ABD = BAK (so le trong)
AB là cạnh chung
Do đó, t/g ABD = t/g BAK ( cạnh góc vuông và góc nhọn kề)
=> BD = AK (2 cạnh tương ứng) (đpcm)
d) Dễ thấy, CA, BH, FE là 3 đường cao của t/g BCF
Do đó 3 đường này cùng đi qua 1 điểm
Mà BH và CA cắt nhau tại D
Nên EF đi qua D
=> E, D, F thẳng hàng (đpcm)
Câu d sai, lm lại
Nối đoạn FD
t/g BAC = t/g BEF ( cạnh góc vuông và góc nhọn kề)
=> BC = BF (2 cạnh tương ứng)
t/g CBD = t/g FBD (c.g.c)
=> CD = FD (...)
t/g CDH = t/g FDH ( cạnh góc vuông và cạnh huyền)
=> CDH = FDH (...)
Có: CDH + CDE + EDB = 180o
Mà CDH = ADB ( đối đỉnh)
= FDH = EDB
Do đó, CDH + CDE + HDF = 180o
=> EDF = 180o
=> E, D, F thẳng hàng (đpcm)
a) Ta có: xy//BC
\(\Rightarrow\widehat{A_1}=\widehat{B}\);\(\widehat{A_2}=\widehat{C}\)
b) Vì \(\widehat{A_1}=\widehat{B}\);\(\widehat{A_2}=\widehat{C}\)
=>\(\widehat{A}+\widehat{B}+\widehat{C}=\widehat{A}+\widehat{A_1}+\widehat{A_2}=180^o\)
Chúc bạn học tốt!
Hình bạn Nguyễn Gia Triệu vẽ rồi nha bạn Trần Thị Thu Huyền
a, Các cặp góc bằng nhau:
\(\widehat{A_1}\)và \(\widehat{B}\); \(\widehat{A_2}\)và \(_{\widehat{C}}\)
b, Ta có:
\(\widehat{A_1=\widehat{B};\widehat{A_2}=\widehat{C}}\)
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=\widehat{A}+\widehat{A_1+\widehat{A_2}=180^o}\)( theo định lý Py-ta-go về tổng ba cạnh tam giác )
a, Do DE//BC
=> \(\widehat{A_1}=\widehat{ABC}\)( so le trong )
Vì \(\widehat{BAz}\)là góc ngoài tam giác ABC
=> \(\widehat{BAz}=\widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{ABC}+\widehat{ACB}\)
Do \(\widehat{A_1}=\widehat{ABC}\)( chứng minh trên )
\(\Rightarrow\widehat{A_2}=\widehat{ACB}\)
Mà góc ABC = góc ACB ( tam giác ABC cân ở A )
=> \(\widehat{A_1}=\widehat{A_2}\)
=> Ax là tia phân giác góc BAz
Hay Ax là phân giác góc ngoài đỉnh A của tam giác ABC
b, Vì \(\widehat{A_2}=\widehat{CAE}\)( 2 góc đối đỉnh)
Mà \(\widehat{A_2}=\widehat{A_1}\)(cmt)
\(\Rightarrow\widehat{A_1}=\widehat{CAE}\)
\(\Rightarrow\widehat{A_1}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)
\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)
Vì góc ABC = góc ACB ( tam giác ABC cân )
=> \(\frac{1}{2}\widehat{ABC}=\frac{1}{2}\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét tam giác DAC và tam giác EAB có:
\(\widehat{ACD}=\widehat{ABE}\)( chứng minh trên )
AC = AB ( tam giác ABC cân )
\(\widehat{DAC}=\widehat{EAB}\)( chứng minh trên )
=> \(\Delta DAC=\Delta EAB\)( g-c-g )
=> DA = EA