Tìm x, y, z:
\(15x=-10y=6z\) và \(x\cdot y\cdot z=-30000\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
15x = -10y = 6z
<=> \(\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\)
<=> \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=-3k\\z=5k\end{cases}}\)
Ta có: xyz = -30000
=> 2k.(-3k).5k = -30000
=> -30k3 = -30000
=> k3 = 1000
=> k = 10
=> x = 20, y = -30, z = 50
Vì 15x = -10y = 6z => \(\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\) => \(\frac{x}{2}=\frac{-y}{3}=\frac{z}{5}\)
Đặt : \(\frac{x}{2}=\frac{-y}{3}=\frac{z}{5}=k\), ta có : x = 2k ; y = (-3).k ; x = 5k
=> x.y.z = 2 .k. ( -3 ). k.5.k = -30.k3 = -30000
=> k3 = 1000 => k = 10 => x = 10. 2 = 20
=> y = 10. ( - 3 ) = -30
=> z = 10.5 = 50
Ta có : 15x = 6z
=> x = 6/15z
-10y = 6z
=> y= -3/5z
=> xyz = -30000
<=> (6/15z) . (-3/5z) . z = -30000
<=> z^3 .( -6/25) = -30000
<=> z^3 = 125000
<=> z = 50
=> y = -30
=> x = 20
Ta có :
15x = -10y
=> 3.x = -2.y => x/-2 = y/3 [1]
-10y = 6.z
=> -5.y = 3.z => y/3 = z/-5 [2]
Từ [1] và [2] => x/-2 = y/3 = z/-5
Đặt x/-2= y/3 = z/-5 = k
=> x= -2k ; y= 3k ; z= -5k
=> xyz = 30. k^3 = 30000 => k^3 = 1000 => k = 10
=> x= -20 ; y = 30 ; z= -50
Vậy x= -20 ; y= 30 ; z= -50
\(15x=-10y\) => \(\frac{x}{-10}=\frac{y}{15}\) => \(\frac{x}{-2}=\frac{y}{3}\)
\(-10y=6z\) => \(\frac{y}{6}=\frac{z}{-10}\) => \(\frac{y}{3}=\frac{z}{-5}\)
=> \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)
=> \(\left(\frac{x}{2}\right)^3=\left(\frac{y}{-3}\right)^3=\left(\frac{z}{5}\right)^3=\frac{xyz}{2.-3.5}=\frac{-30000}{-30}=1000\)
=> x = 20
y = -30
z = 50
Chúc bạn làm bài tốt
\(15x=-10y=6z\Rightarrow\frac{15x}{30}=\frac{-10y}{30}=\frac{6z}{30}\)
\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=n\)
\(\Rightarrow x=2n,y=-3n,z=5n\)
\(\Rightarrow xyz=2n.-3n.5n\)
\(=-30n^3=-30000\Rightarrow n^3=-1000=-10^3\)
\(\Rightarrow n=-10\)
\(15x=-10y=6z\) => \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)
=> \(x=2k;\) \(y=-3k;\)\(z=5k\)
Ta có: \(x.y.z=-30000\)
<=> \(2k.\left(-3k\right).5k=-30000\)
<=> \(-30k^3=30000\)
<=> \(k^3=1000\)
<=> \(k=10\)
suy ra: \(x=20;\)\(y=-30\)\(z=50\)