Phân tích đa thức thành nhân tử
a) x( x + 4 )( x - 4 ) - ( x^2 + 1 )( x^2- 1 )
b) x^4 + 2x^3 + 5x^2 + 4x - 12
Giúp tớ với tớ cần gấp lắm
Cầu xin mấy bạn làm giúp với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=2x^4+6x^3+9x^2+6x+2\)(bạn nhân phá ngoặc rồi thu gọn nhé)
\(=\left(2x^4+2x^3+x^2\right)+\left(4x^3+4x^2+2x\right)+\left(4x^2+4x+2\right)\)
\(=x^2\left(2x^2+2x+1\right)+2x\left(2x^2+2x+1\right)+2\left(2x^2+2x+1\right)\)
\(=\left(x^2+2x+2\right)\left(2x^2+2x+1\right)\)
b. 2x3-3x2+3x-1=2x3-x2-2x2+x+2x-1
= x2(2x-1)-x(2x-1)+(2x-1)
=(2x-1)(x2-x-1)
c. 3x3-14x2+4x+3= 3x3+x2-15x2-5x+9x+3
=x2(3x+1)-5x(3x-1)+3(3x+1)
=(3x+1)(x2-5x+3)
Bài 2:
\(\left(5x+1\right)^2-\left(2xy-3\right)^2\)
\(=25x^2+10x+1-\left(2xy-3\right)^2\)
\(=25x^2+10x+1\left(4x^2y^2-12xy+9\right)\)
\(=25x^2+10x+1-4x^2y^2+12xy-9\)
\(=25x^2-4x^2y^2+10x+12xy-8\)
Bài 2:
\(\left(x-1\right)\left(x^2+x+1\right)=x^2\left(x-9\right)+2x+6\)
\(=x^3-1=x^3-9x^2+2x+6\)
\(=x^3-9x^2+2x+6=x^3-1\)
\(=x^3-9x^2+2x+6+1=x^3-1+1\)
\(=x^3-9x^2+2x+7=x^3\)
\(=x^3-9x^2+2x+7-x^3=x^3-x^3\)
\(=-9x^2+2x+7=0\)
\(\Rightarrow x=-\frac{7}{9};x=1\)
\(1.\)
\(x^3-x^2-x+1=0\)
\(=x^2\left(x-1\right)-\left(x-1\right)=0\)
\(=\left(x-1\right)\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Mình mới lớp 7 nên chỉ giải được 1 bài thôi!
\(3x^2-7x+2=3x^2-\left(6x+1x\right)+2=3x^2-6x-1x+2\)
\(3x\left(x-2\right)-1\left(x-2\right)=\left(x-2\right)\left(3x-1\right)=3\left(x-2\right)\left(x-\frac{1}{3}\right)\)
a) \(x\left(x+4\right)\left(x-4\right)-\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
bạn ktra lại đề
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
Ủa pạn có thể giải ại cái bước thứ 2 đc ko ạk