K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Để bài : 1/x + 1/y + 1/z = 1

Do vai trò x, y, z như nhau nên giả sử: x ≥ y ≥ z > 0 => 1/x ≤ 1/y ≤ 1/z 
=> 1/x + 1/y + 1/z ≤ 1/z + 1/z + 1/z = 3/z 
=> 1 ≤ 3/z => z ≤ 3 => z = 1, 2, 3 
TH1: Với z = 1 => 1/x + 1/y = 0 vô lý vì x, y nguyên dương 
TH2: với z = 2 => 1/x + 1/y = 1/2 => 1/x + 1/y ≤ 2/y 
=> 1/2 ≤ 2/y y ≤ 4 => y = 2, 3, 4 
+) y = 2 => 1/x = 0 vô lý 
+) y = 3 => 1/x = 1/2 - 1/3 = 1/6 => x = 6 
+) y = 4 => 1/x = 1/2 - 1/4 = 1/4 => x = 4 
TH3: Với z = 3 => 1/x + 1/y = 1 - 1/3 = 2/3 
Ta có 1/x + 1/y ≤ 2/y => 2/3 ≤ 2/y => y ≤ 3 => y = 3 => x = 3 
KL :(x, y, z) = (4; 4; 2); (6, 3, 2); (3, 3, 3)

30 tháng 12 2018

Do vai trò x, y, z như nhau nên giả sử: x ≥ y ≥ z > 0 => 1/x ≤ 1/y ≤ 1/z 
=> 1/x + 1/y + 1/z ≤ 1/z + 1/z + 1/z = 3/z 
=> 1 ≤ 3/z => z ≤ 3 => z = 1, 2, 3 
TH1: Với z = 1 => 1/x + 1/y = 0 vô lý vì x, y nguyên dương 
TH2: với z = 2 => 1/x + 1/y = 1/2 => 1/x + 1/y ≤ 2/y 
=> 1/2 ≤ 2/y y ≤ 4 => y = 2, 3, 4 
+) y = 2 => 1/x = 0 vô lý 
+) y = 3 => 1/x = 1/2 - 1/3 = 1/6 => x = 6 
+) y = 4 => 1/x = 1/2 - 1/4 = 1/4 => x = 4 
TH3: Với z = 3 => 1/x + 1/y = 1 - 1/3 = 2/3 
Ta có 1/x + 1/y ≤ 2/y => 2/3 ≤ 2/y => y ≤ 3 => y = 3 => x = 3 
KL :(x, y, z) = (4; 4; 2); (6, 3, 2); (3, 3, 3)

21 tháng 10 2020

Nhân hai vế của phương trình với 6xy:
                   6y+6x+1=xy6y+6x+1=xy
Đưa về phương trình ước số:
      x(y−6)−6(y−6)=37x(y−6)−6(y−6)=37 
⇔(x−6)(y−6)=37⇔(x−6)(y−6)=37
Do vai trò bình đẳng của xx và yy, giả sử xy⩾1x⩾y⩾1, thế thì x−6⩾y−6⩾−5x−6⩾y−6⩾−5.
Chỉ có một trường hợp:
               {−6=37y−6=1⇔{=43y=7{−6=37y−6=1⇔{=43y=7
Đáp số:  (43;7),(7;43)
 

\(x;y\in N^{\cdot}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}\le1\\\frac{1}{y}\le1\end{cases}}\)

\(\Leftrightarrow z=\frac{1}{x}+\frac{1}{y}\le2\)

\(z=2\Leftrightarrow x=y=1\)( dấu = xảy ra)

\(+z=1\Leftrightarrow1=\frac{1}{x}+\frac{1}{y}.\)

    Nếu x = y => 2/x  =1 => x =y =2

    Nếu  g/s  x > y => 1 = 1/x +1/y  < 2/y =>y < 2 

        => y =1  => 1/x  =0 ( vô lí ) 

Vậy x =y =2; z =1 hoặc x = y =1 ; z =2

10 tháng 2 2017

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

Do vai trò của x,y,z là như nhau nên không mất tính tổng quát, giả sử \(x\ge y\ge z\ge1\)(nguyên dương)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}.\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}.\)

\(\Rightarrow z\le1\) mà    \(z\ge1\)

\(\Rightarrow z=1.\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=2-\frac{1}{1}=1\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}.\)

\(\Rightarrow y\le2\)mà   \(y\ge1\)

\(\Rightarrow y\in\left\{1;2\right\}.\)

*Nếu \(y=1\Rightarrow\frac{1}{x}=1-\frac{1}{1}=0\Rightarrow x=\frac{1}{0}\)(vô lí)

*Nếu \(y=2\Rightarrow\frac{1}{x}=2-\frac{1}{2}=\frac{1}{2}\Rightarrow x=2\)(thỏa mãn)

Vậy \(x=y=2,z=1.\)

26 tháng 4 2017

Do vai trò của x,y,z là như nhau nen giả sử z ≥ y ≥ x ≥ 1 

Ta sẽ thử trực tiếp một vài trường hợp: 

Nếu x = 1 thì 1/y + 1/z = 0 ( vô nghiệm) 

Nếu x = 2 thì 1/y + 1/z = 1/2 <=> 2y + 2z = yz <=> (y - 2)(z - 2) = 4 

Mà :0 ≤ y - 2 ≤ z - 2 và (y- 2), (z - 2) phải là ước của 4 

Do đó ta có các trường hợp: 

{ y - 2 = 1```````{ y = 3 
{ z - 2 = 4 <=>{ z = 6 

{ y- 2 = 2````````{ y = 4 
{ z - 2 = 2 <=>{ z = 4 

Nếu x = 3 thì 1/y + 1/z = 2/3 

+ Nếu y = 3 thì z = 3 

+ Nều y ≥ 4 thì 1/y + 1/z ≤ 1/4 + 1/4 = 1/2 < 1/3 

=> phương trình vô nghiệm 

Nếu x = 4 thì 1/x + 1/y + 1/z ≤ 1/4 + 1/4 + 1/4 = 3/4 < 1 

=>pt vô nghiệm 

Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin avt1536386_60by60.jpgWrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

15 tháng 6 2019

\(VD1\)

Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)

\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)

\(\Rightarrow\sqrt{x}\le4,5\)

\(\Rightarrow x\le4,5^2\)

\(\Rightarrow x\le20,25\)

\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)

TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)

TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)

Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)

Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)

Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)

Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )

KL....
 

15 tháng 6 2019

VD2: Ta có:

x+y+z=xyz ( 1 )

Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:

\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Giả sử \(x\ge y\ge z\ge1\)thì ta có:

\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)

Thay z=1 vào ( 1 ) ta đc:

x+y+1=xy

\(\Leftrightarrow\)xy -x - y = 1

\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2

\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2

Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3