rút gon:\(\frac{1+2019\sqrt{2018}-2018\sqrt{2019}}{\sqrt{2018}+\sqrt{2019}+\sqrt{2018.2019}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
DKCĐ: a>0,\(a\ne1\)
\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{a}-\dfrac{1}{a}\right)\)\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\right)\)\(=\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{1+a+1-a+2\sqrt{\left(1+a\right)\left(1-a\right)}}{\left(1+a\right)-\left(1-a\right)}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\)\(=\dfrac{2\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)}{2a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\sqrt{\left(1+a\right)\left(1-a\right)}+1}{a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)\left(\sqrt{\left(1+a\right)\left(1-a\right)}-1\right)}{a^2}\\ =\dfrac{\left(1+a\right)\left(1-a\right)-1}{a^2}\\ =\dfrac{1-a^2-1}{a^2}\\ =\dfrac{-a^2}{a^2}\\ =-1\)
Ta có: \(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}=\frac{\left(k+1\right)\sqrt{k}-k\sqrt{k+1}}{k\left(k+1\right)^2-k^2\left(k+1\right)}\)
\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k^3+2k^2+k-k^3-k^2}\)
\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k\left(k+1\right)}\)
\(=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Lần lượt thay k=1;2;...;2018 ta được:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{1}-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
...
\(\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}=\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)
Cộng vế theo vế ta được:
\(C=1-\frac{1}{\sqrt{2019}}=...\)
\(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}\ge\frac{\left(\sqrt{2019}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}\)
Dấu "=" ko xảy ra nên \(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)