Giúp mình giải bài này nha.
Cho M=19.(5^2+1).(5^4+1).(5^8+1).(5^16+1).....(5^128+1) và N=5^256.So sánh M và N.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B)A*2=(1/2+1/4+....+1/256)*2
=1+1/2+1/4+....+1/128)
A*2-A=(1+1/2+1/4+...+1/128)-(1/2+1/4+...+1/256)
=1-1/256
=255/256
a) Đặt A = \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\)
\(\Rightarrow\frac{1}{3}\times A=\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\)
Lấy \(A-\frac{1}{3}\times A\)theo vế ta có :
\(A-\frac{1}{3}\times A=\left(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}\right)-\left(\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}+\frac{5}{486}\right)\)
\(\Rightarrow\frac{2}{3}\times A=\frac{5}{2}-\frac{5}{486}\)
\(\Rightarrow\frac{2}{3}\times A=\frac{605}{243}\)
\(\Rightarrow A=\frac{605}{243}:\frac{2}{3}\)
\(\Rightarrow A=\frac{605}{162}\)
Vậy \(\frac{5}{2}+\frac{5}{6}+\frac{5}{18}+\frac{5}{54}+\frac{5}{162}=\frac{605}{162}\)
b) Đặt B = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}+\frac{1}{256}\)
=> \(\frac{1}{2}\times B=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}+\frac{1}{512}\)
Lấy B trừ \(\frac{1}{2}\times B\)theo vế ta có :
\(B-\frac{1}{2}\times B=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...++\frac{1}{128}+\frac{1}{256}\right)-\left(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{512}\right)\)
\(\Rightarrow\frac{1}{2}\times B=\frac{1}{2}-\frac{1}{512}\)
\(\Rightarrow\frac{1}{2}\times B=\frac{255}{512}\)
\(\Rightarrow B=\frac{255}{512}:\frac{1}{2}\)
\(\Rightarrow B=\frac{255}{256}\)
Vậy \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{256}=\frac{255}{256}\)
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
B1: để x là số nguyên thì: 5 chia hết cho 2x+1
=> \(2x+1\in U\left(5\right)\)
+> \(2x+1\in\left\{1;-1;5;-5\right\}\)
=> \(x\in\left\{0;-1;2;-3\right\}\)
1. 2006/987654321 + 2007/246813579 = 2007/246813579 + 2006/987654321
=>
2.
3 - (5.3/8 + X - 7 . 5/24) : 6 . 2/3 =2
3 - (15/8 + X - 35/24) : 4 = 2
3 - (15/8 + X - 35/24) = 2 . 4
3 - (15/8 + X - 35/24) = 8
15/8 + X - 35/24 = 3 - 8
15/8 + X - 35/24 = -5
15/8 + X = -5 + 35/24
15/8 + X = -85/24
X = -85/24 - 15/8
X = -65/12