an đọc 1 quyển truyện trong 3 ngày .ngày đầu đọc 1/3 số trang và thêm 8 trang.ngày 2 đọc được 1/3 số trang và 16 trang .ngày thứ 3 đọc 2/3 số trang ngày đầu . quyển sách dày ? trang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là số trang sách, theo đề bài ta được :
- Ngày thứ 1 đọc được : \(\dfrac{1}{3}xa+9\)
- Ngày thứ 2 đọc được : \(\dfrac{1}{3}xa+16\)
- Ngày thứ 3 đọc được : \(\dfrac{2}{3}x\left(\dfrac{1}{3}xa+9\right)=\dfrac{2}{9}xa+6\left(1\right)\)
⇒ Ngày 1 và 2 đọc được là :\(\dfrac{1}{3}xa+9+\dfrac{1}{3}xa+16=\dfrac{2}{3}xa+25\)
⇒ Ngày thứ 3 đọc được là : \(a-\left(\dfrac{2}{3}xa+25\right)=a-\dfrac{2}{3}xa-25=\dfrac{1}{3}xa-25\)
\(\left(1\right)\Rightarrow\dfrac{1}{3}xa-25=\dfrac{2}{9}xa+6\)
\(\Rightarrow\dfrac{1}{3}xa-\dfrac{2}{9}xa=25+6\)
\(\Rightarrow\left(\dfrac{1}{3}-\dfrac{2}{9}\right)xa=31\)
\(\Rightarrow\dfrac{1}{9}xa=31\Rightarrow a=31x9=279\)
Vậy quyển sách đó dày 279 (trang)
Đây là toán nâng cao thuộc chủ điểm tìm một số khi biết giá trị phân số của nó, ở tiểu học em nhé.(cấu trúc thi hsg, thi chuyên)
Ngày thứ ba An đọc: (\(\dfrac{1}{3}\) số trang + 9 trang)\(\times\)\(\dfrac{2}{3}\)= \(\dfrac{2}{9}\)số trang + 6 trang
Nếu ngày thứ nhất, thứ hai, thứ ba An không đọc thêm 9 trang, 16 trang, 6 trang thì số trang còn lại sau ba ngày là:
9 + 16 + 6 = 31 (trang)
Phân số chỉ 31 trang sách là: 1 - \(\dfrac{1}{3}\) - \(\dfrac{1}{3}\) - \(\dfrac{2}{9}\) = \(\dfrac{1}{9}\)(số trang)
Quyển sách An đọc dày số trang là: 31: \(\dfrac{1}{9}\) = 279 (trang)
Đáp số: 279 trang
Ngày thứ nhất đọc được::
(18 + 6) : 1/3 : 1/3 : 3 = 72 (trang)
Ngày thứ ba đọc được:
72 x 2/3 = 48 (trang)
Quyển sách đó dày:
(72 + 48) : 1/3 = 360 (trang)
ĐS: 360 trang
tk nha mọi người
Vì \(\frac{1}{3}×\frac{2}{3}=\frac{2}{9};8×\frac{2}{3}=\frac{16}{3}\) nên ngày thứ ba An đọc được \(\frac{2}{9}\) số trang và \(\frac{16}{3}\) trang truyện.
Cả ba ngày An đọc được : \(\frac{1}{3}\) số trang + 8 trang + \(\frac{1}{3}\) số trang + 16 trang + \(\frac{2}{9}\) số trang + \(\frac{16}{3}\) trang = \(\frac{8}{9}\) số trang + \(\frac{88}{3}\) trang.
Vậy \(\frac{88}{3}\) trang ứng với số phần số trang của quyển truyện là :
\(1-\frac{8}{9}=\frac{1}{9}\) ( số trang )
Số trang của quyển truyện đọc là :
\(\frac{88}{3}\div\frac{1}{9}=264\) ( trang )
Cbht
30 trang cuối chiếm số phần là:
1 - 3/4 = 1/4 ( số trang sau 2 ngày )
Số trang bạn học sinh đọc đc sau hai ngày là :
30 x 4 = 120 ( trang )
Số trang trước khi đọc 20 trang của ngày thứ hai là :
120 + 20 = 140 ( trang )
140 còn lại của ngày thứ nhất chiếm số phần là:
1 - 3/10 = 7/10 ( ngày thứ nhất )
Số trang bạn học sinh đọc sau ngày thứ nhất là :
140 : 7 x 10= 200 ( trang )
Số trang trước khi đọc 16 trang ngày thứ nhất là :
200 + 16 = 216 ( trang )
216 trang còn lại chiếm số phần là:
1 - 1/5 = 4/5 ( quyển sách )
Số trang của quyển sách đó là :
216 : 4 x 5 = 270 ( trang )
Đáp số: 270 trang
phân số chỉ 30 trang cuối:
1 – ¾ = ¼ (số trang sau ngày 2)
Số trang sau ngày thứ 2:
30 x 4 = 120 (trang)
Số trang trước khi đọc 20 trang ngày thứ 2:
120 + 20 = 140 (trang)
Phân số chỉ 140 trang còn lại sau ngày thứ nhất:
1 – 3/10 = 7/10 (ngày thứ nhất)
Số trang sau ngày thứ nhất:
140 : 7 x 10 = 200 (trang)
Số trang trước khi đọc 16 trang ngày thứ 1:
200 + 16 = 216 (trang)
Phân số chỉ 216 trang còn lại sau khi đọc 1/5 quyển sách:
1 – 1/5 = 4/5 (quyển sách)
số trang của quyển sách:
216 :4 x 5 = 270 (trang)
ĐS: 270 trang
Lập phương trình
Gọi số trang là: x {hỏi cái gì đắt cái đó làm ẩn}
gọi số trang đọc theo đọc được theo từng ngày là: a[1,2,3]
thì ta có hệ phương trình:\(\left\{\begin{matrix}a_1+5=\frac{1}{5}x\\a_2-7=\left(x-a_1\right)\\a_3=\frac{2}{5}\left[x-\left(a_1+a_2\right)\right]\\a_4=\frac{2}{3}\left[x-\left(a_1+a_2+a_3\right)\right]\end{matrix}\right.\)
Thiếu 1 pt: \(\left(a_1+a_2+a_3+a_4+41\right)=x\) {không vào sửa được-> viết ngoài hệ}
Như vậy ta có hệ 5 pt 5 ẩn => đủ để tìm x, (bạn tự làm)
đọc lại đề nhầm ngày thứ 4 đọc hết quyển truyện {tương còn để lại 41}
do vây--> a4=2/3[...]+41
Phuowfg trình bên ngoài hệ còn (a1+a2+a3+a4)=x
270 trang ban nhe
thế cách làm kiểu nào