B=1/5+1/10+1/20+1/40+...+1/1280 tính nhanh.
giup minh voi nhe!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/5 + 1/5 - 1/10 + 1/10 - 1/20 + 1/20 - 1/40 + ... + 1/640 - 1/1280
= 1/5 + 1/5 - 1/1280 = 511/1280
B=51+101+201+401+...+12801
�=1⋅15+12⋅15+14⋅15+18⋅15+...+1256⋅15B=1⋅51+21⋅51+41⋅51+81⋅51+...+2561⋅51
�=15⋅(1+12+14+18+...+1256)B=51⋅(1+21+41+81+...+2561)
Đặt �=1+12+14+18+...+1256A=1+21+41+81+...+2561
⇒2�=2+1+12+14+...+1128⇒2A=2+1+21+41+...+1281
⇒2�−�=2−1256⇒2A−A=2−2561
�=2−1256A=2−2561
Thay A vào B
có: �=15.(2−1256)=15⋅511256=5111280B=51.(2−2561)=51⋅256511=1280511
A = \(\dfrac{1}{5}+\dfrac{1}{10}+...+\dfrac{1}{1280}\)
= \(\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{20}+...+\dfrac{1}{640}-\dfrac{1}{1280}\)
= \(\dfrac{2}{5}-\dfrac{1}{1280}=\dfrac{511}{1280}\)
Giải:
\(\dfrac{1}{5}+\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{40}+...+\dfrac{1}{1280}\)
\(=\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{20}+\dfrac{1}{20}-\dfrac{1}{40}+...+\dfrac{1}{640}-\dfrac{1}{1280}\)
\(=\dfrac{2}{5}-\dfrac{1}{1280}\)
\(=\dfrac{511}{1280}\)
\(\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(=\frac{1}{5}\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(=\frac{\frac{1}{5}\left(1-\frac{1}{2^9}\right)}{\left(1-\frac{1}{2}\right)}\)
\(=\frac{2}{5}\left(1-\frac{1}{2^9}\right)\)
a/ Đặt 1/5= a, ta có:
1/5 + 1/10 + 1/20 + 1/40 + ... + 1/1280
= 1/a + 1/2 x a + 1/4 x a + ... + 1/256 x a
A = 1/a + 1/2 x a + 1/4 x a + ... + 1/256 x a
2 x A = 2/a + 1/a + 1/2 x a + 1/4 x a + ... + 1/128 x a
=> A = 2/a - 1/256 x a = 2/5 - 1/1280 = 511/1280
b/
\(\frac{121}{27}.\frac{54}{11}=\frac{11.11.27.2}{27.11}=11.2=22\)
\(\frac{100}{21}:\frac{25}{126}=\frac{100}{21}.\frac{126}{25}=\frac{25.4.21.6}{21.25}=4.6=24\)
=> \(22< n< 24\)
=> \(n=23\)
Tham khảo ở phần Câu hỏi tương tự bạn nhé :
Câu hỏi của Trịnh Thúy An - Toán lớp 5 - Học toán với OnlineMath
\(B=\frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+...+\frac{1}{1280}\)
\(B=1\cdot\frac{1}{5}+\frac{1}{2}\cdot\frac{1}{5}+\frac{1}{4}\cdot\frac{1}{5}+\frac{1}{8}\cdot\frac{1}{5}+...+\frac{1}{256}\cdot\frac{1}{5}\)
\(B=\frac{1}{5}\cdot\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\right)\)
Đặt \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\Rightarrow2A-A=2-\frac{1}{256}\)
\(A=2-\frac{1}{256}\)
Thay A vào B
có: \(B=\frac{1}{5}.\left(2-\frac{1}{256}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)