72 . Số chính phương là số bằng bình phương của một số tự nhiên ( ví dụ : 0 ; 1 ; 4 ; 9 ; 16 ; ........ ) . Mỗi tổng sau có là một số chính phương không ?
\(a.1^3+2^3\)
\(b.1^3+2^3+3^3\)
\(c.1^3+2^3+3^3+4^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(SCP là viết tắt của số chính phương)
Ta có: 13 = 1; 23 = 8; 33 = 27; 43 = 64.
● 13 + 23 = 1 + 8 = 9.
Mà 9 = 32 là SCP (vì là bình phương của 3) nên 13 + 23 là SCP.
13 + 23 + 33 = 1 + 8 + 27 = 36.
Mà 36 = 62 là SCP (vì là bình phương của 6) nên 13 + 23 + 33 là SCP
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100.
Mà 100 = 102 là SCP (vì là bình phương của 10) nên 13 + 23 + 33 + 43 là SCP.
Vậy mỗi tổng đã cho đều là số chính phương.
Số số hạng của tổng đã cho là :
[(2n - 1) - 1] : 2 + 1 = (2n - 2)) : 2 + 1
= 2(n - 1) : 2 + 1
= n - 1 + 1
= n
Trung bình ộng của tổng là :
[(2n - 1) + 1] : 2 = (2n - 1 + 1) : 2
= 2n : 2
= n
Khi đó ; 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) = n.n = n2
Vậy 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) là số chính phương
Có :
0 ; 1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49 ; 64 ; 81
Đó là các bình phương ( hoặc chính phương ) của :
0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9
a) 1^3 + 2^3 =1+8=9=32
=>Tổng trên viết đc
b)13+23+33=1+8+27=36=62
=>Tổng trên viết đc
c)13+23+33+43=1+8+27+64=100=102
=>Tổng trên viết đc
a) 1^3 + 2^3 = 9 => Có là số chính phương ( 9 = 3^2 )
b) 1^3 + 2^3 + 3^3 = 36 => Có là số chính phương ( 36 = 6^2 )
c) 1^3 + 2^3 + 3^3 + 4^3 = 100 => Có là số chính phương ( 100 = 10^2 )