K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

c: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

2 tháng 4 2017

Ưu tiên câu c

17 tháng 5 2020

a) Tứ giác AIHK có góc H=K=I=A=90độ
=> AIHK LÀ HÌNH CHỮ NHẬT ( tỨ GIÁC CÓ 3 GÓC VUÔNG)

15 tháng 10 2021

b: Xét ΔHAB vuông tại H có HD là đường cao ứng với cạnh huyền BA

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

17 tháng 1 2016

EM CHUA HOC MOI HOC LOP 7 XIN LOI CHI TIC CHO EM CAI VOI

18 tháng 1 2016

AI = \(\frac{8\sqrt{5}}{5}\)

AK = \(\frac{4\sqrt{5}}{5}\)

SAIK = \(\frac{8\sqrt{5}}{5}\) *\(\frac{4\sqrt{5}}{5}\)   / 2 = 3,2 cm2

1: BA=căn 10^2-6^2=8cm

sin ABC=AC/BC=3/5

=>góc ABC=37 độ

AH=6*8/10=4,8cm

BH=BA^2/BC=8^2/10=6,4cm

2: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

3: AI*AB=AK*AC

=>AI/AC=AK/AB

Xét ΔAIK và ΔACB có

AI/AC=AK/AB 

góc IAK chung

=>ΔAIK đồng dạng với ΔACB

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn