K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{\left(2+\sqrt{3}-1\right)\cdot\sqrt{3}}{\sqrt{7+4\sqrt{3}-2-\sqrt{3}+1}}\)

\(=\dfrac{\left(\sqrt{3}+1\right)\cdot\sqrt{3}}{\sqrt{6+3\sqrt{3}}}=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{1}{2\sqrt{3}+3}}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{\sqrt{3}\left(2-\sqrt{3}\right)}{3}}\)

\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{2-\sqrt{3}}{\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{\sqrt{3}}}\)

\(=\sqrt{\dfrac{8-6}{\sqrt{3}}}=\sqrt{\dfrac{2\sqrt{3}}{3}}\)

c: \(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}+...-\sqrt{1994}+\sqrt{1995}\)

\(=\sqrt{1995}-1\)

10 tháng 4 2021

a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)

b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)

\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)

( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))

c, Với \(a\ge0;a\ne1\)

\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)

18 tháng 10 2021

a. B = \(\dfrac{\sqrt{36}}{\sqrt{36}-3}=\dfrac{6}{6-3}=2\)

 

18 tháng 10 2021

a: Thay x=36 vào B, ta được:

\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)

29 tháng 1 2021

a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow B=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(\Leftrightarrow B=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)

b) \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)  (*)

Thay (*) vào B , ta được : \(B=\dfrac{2-\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+3}\)

 

29 tháng 1 2021

Chép sai đề r bạn ơi!

Câu 1:       Cho hai biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\)  và \(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)\) với \(x\ge0,x\ne1.\)a) Tính giá trị của biểu thức B khi x = 4;b) Rút gọn biểu thức M = A.B;c) Tìm x để \(M=\dfrac{\sqrt{x}}{6}.\)Câu 2:        Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở...
Đọc tiếp

undefined

Câu 1:

       Cho hai biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\)  và \(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)\) với \(x\ge0,x\ne1.\)

a) Tính giá trị của biểu thức B khi x = 4;

b) Rút gọn biểu thức M = A.B;

c) Tìm x để \(M=\dfrac{\sqrt{x}}{6}.\)

Câu 2:

        Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.

Câu 3: 

1. Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{3}{y}=4\\\dfrac{5}{x}-\dfrac{2}{y}=3\end{matrix}\right.\)

2. Cho phương trình \(x^4-\left(m+2\right)x^2+m+1=0\)   (1)

a) Giải phương trình (1) khi m = 2;

b) Tìm m để phương trình (1) có 4 nghiệm phân biệt.

Câu 4:

Cho đường tròn (O;R). Điểm M ở ngoài đường tròn sao cho OM = 2R. Kẻ hai tiếp tuyến MA, MB với đường tròn (A; B là các tiếp điểm). Nối OM cắt AB tại H. Hak HD ⊥ MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F.

a) Chứng minh MAOB là tứ giác nội tiếp;

b) Chứng minh OH.OM = OA2;

c) Đường tròn đường kính MB cắt BD tại I, gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng.

                                                                   undefined

Câu 5:

Tính diện tích xung quanh của hình nón có đường sinh bằng 10cm, đường kính đáy bằng 8cm.

Chúc các em ôn thi tốt!

 

6
6 tháng 4 2021

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.

Giải

Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)

=> Số học sinh lớp 9B: 90 - x (học sinh)

Số sách và vở lớp 9A quyên góp: 3x (quyển)

Số sách và vở lớp 9B ủng hộ : 2(x-90) (quyển)

Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình

3x + 2(x-90) = 222

\(\Leftrightarrow3x+2x-180=222\)

\(\Leftrightarrow5x=402\)

(đoạn này thì ra lẻ nên e ko tính đc ạ)

6 tháng 4 2021

Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.

Giải

Gọi số học sinh lớp 9A là x (x là số tự nhiên, x < 90)

=> Số học sinh lớp 9B: 90 - x (học sinh)

Số sách và vở lớp 9A quyên góp: 3x (quyển)

Số sách và vở lớp 9B ủng hộ : 2(90-x) (quyển)

Do cả hai lớp ủng hộ được 222 quyển sách và vở nên ta có phương trình

3x + 2(90-x) = 222

=> 3x + 180 - 2x = 222

=> x + 180 = 222 

=> x = 42 (tmđk)

Vậy lớp 9A có 42 học sinh

lớp 9B có 90 - 40 = 48 học sinh

a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

b) Ta có: \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{2}+1-\sqrt{2}+1\)

=2

Thay x=2 vào A, ta được:

\(A=\dfrac{-3}{3+\sqrt{2}}=\dfrac{-9+3\sqrt{2}}{7}\)

a: Sửa đề: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\dfrac{2}{x^2-2x+1}\)

\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\cdot\dfrac{1}{2}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-1}\)

b: Để P>0 thì \(-\dfrac{\sqrt{x}}{\sqrt{x}-1}>0\)

=>\(\dfrac{\sqrt{x}}{\sqrt{x}-1}< 0\)

=>\(\sqrt{x}< 1\)

=>\(0< =x< 1\)

c: Thay \(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) vào P, ta được:

\(P=\dfrac{-\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{\left(2-\sqrt{3}\right)^2}-1}\)

\(=\dfrac{-\left(2-\sqrt{3}\right)}{2-\sqrt{3}-1}=\dfrac{-2+\sqrt{3}}{1-\sqrt{3}}=\dfrac{2-\sqrt{3}}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}-1}{2}\)

12 tháng 4 2022

1.\(x=4\)

\(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)=\left(\dfrac{4+1}{2}-\sqrt{4}\right)=\dfrac{5}{2}--2=\dfrac{5-4}{2}=\dfrac{1}{2}\)

2.\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)=\left(\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

        \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{x+1}{2}-\sqrt{x}=\dfrac{x+1-2\sqrt{x}}{2}=\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)

\(M=A.B=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

3.\(M=\dfrac{\sqrt{x}}{6}\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{6}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=6\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+\sqrt{x}=6\sqrt{x}-6\)

\(\Leftrightarrow x-5\sqrt{x}+6=0\)

Đặt \(\sqrt{x}=a;a\ge0\)

=> pt trở thành:

\(a^2-5a+6=0\)

\(\Delta=\left(-5\right)^2-4.6=25=24=1>0\)

=> pt có 2 nghiệm:

\(\left\{{}\begin{matrix}x_1=\dfrac{5+\sqrt{1}}{2}=3\left(tm\right)\\x_2=\dfrac{5-\sqrt{1}}{2}=2\left(tm\right)\end{matrix}\right.\)

Xét \(\sqrt{a}=3\)

\(\Leftrightarrow a=9\)

Xét \(\sqrt{a}=2\)

\(\Leftrightarrow a=4\)

Vậy \(x=9;4\)

Câu 1: Cho các biểu thức A = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\), với x  ≥ 0, x ≠ 9.a) Tính giá trị của B khi x = 16;b) Rút gọn biểu thức M = A - B;c) Tìm x để M = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\)Câu 2:a) Tính thể tích một viên kẹo sô-cô-la hình cầu có đường kính bằng 3cm.b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:Hai tổ sản xuất cùng làm chung một công việc thì sau 12...
Đọc tiếp

undefined

Câu 1: 

Cho các biểu thức A = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\), với x  ≥ 0, x ≠ 9.

a) Tính giá trị của B khi x = 16;

b) Rút gọn biểu thức M = A - B;

c) Tìm x để M = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\)

Câu 2:

a) Tính thể tích một viên kẹo sô-cô-la hình cầu có đường kính bằng 3cm.

b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai tổ sản xuất cùng làm chung một công việc thì sau 12 giờ xong. Nếu tổ 1 làm một mình trong 2 giờ, tổ 2 làm một mình trong 7 giờ thì cả hai tổ làm xong một nửa công việc. Tính thời gian mỗi tổ làm một mình xong toàn bộ công việc.

Câu 3:

1. Cho phương trình \(x-\left(m+3\right)\sqrt{x}+m+2=0\left(1\right)\)

a) Giải phương trình (1) khi m  = - 4

b) Tìm m để phương trình (1) có hai nghiệm phân biệt.

2. Cho đường thẳng (d): y = (m - 1) + 4 (m ≠ 1). Đường thẳng (d) cắt Ox tại A, cắt Oy tại B. Tìm m để diện tích tam giác OAB bằng 2.

Câu 4:

Cho tam giác đều ABC nội tiếp đường tròn (O; R). Điểm M trên cung nhỏ AC. Hạ BK ⊥ AM tại K. Đường thẳng BK cắt tia CM tại E. Nối BE cắt đường tròn (O: R) tại N (N ≠ B).

a) Chứng minh tam giác MBE cân tại M;

b) Chứng minh EN.EB = EM.EC;

c) Tìm vị trí của M để tam giác MBE có chu vi lớn nhất.

Câu 5:

Giải hệ phương trình: \(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)

 

Chúc các em ôn thi tốt!

6

Câu 1: 

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

a) Thay x=16 vào B, ta được:

\(B=\dfrac{1}{\sqrt{16}-3}=\dfrac{1}{4-3}=1\)

Vậy: Khi x=16 thì B=1

b) Ta có: M=A-B

\(=\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+3+2\sqrt{x}-6-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+3\sqrt{x}-2\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)

c) Để \(M=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow x-4=x-2\sqrt{x}-3\)

\(\Leftrightarrow-2\sqrt{x}-3=-4\)

\(\Leftrightarrow-2\sqrt{x}=-1\)

\(\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\)

hay \(x=\dfrac{1}{4}\)(thỏa ĐK)

Vậy: Để \(M=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) thì \(x=\dfrac{1}{4}\)

Câu 2: 

b) Gọi thời gian tổ 1 hoàn thành công việc khi làm một mình là x(giờ)

thời gian tổ 2 hoàn thành công việc khi làm một mình là y(giờ)

(Điều kiện: x>12; y>12)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)

Vì khi tổ 1 làm trong 2 giờ, tổ 2 làm trong 7 giờ thì hai tổ hoàn thành được một nửa công việc nên ta có phương trình: \(\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-5}{y}=\dfrac{-1}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=15\\\dfrac{1}{x}+\dfrac{1}{15}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{60}\\y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm một mình

Tổ 2 cần 15 giờ để hoàn thành công việc khi làm một mình

Câu 1:Cho các biểu thức: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\) và \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\) với x ≥ 0, x ≠ 1, x ≠ 9.a) Tính giá trị của B khi x = 25;b) Rút gọn biểu thức M = A.B;c) Tìm x sao cho \(M \sqrt{M}.\)Câu 2:a) Khi uống nước giải khát, người ta hay sử dụng ống hút bằng nhựa hình trụ có đường kính đáy là 0,4cm, độ dài trục là 16cm. Hỏi khi thải ra môi trường, diện tích nhựa gây ô nhiễm môi...
Đọc tiếp

undefined

Câu 1:

Cho các biểu thức: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\) và \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\) với x ≥ 0, x ≠ 1, x ≠ 9.

a) Tính giá trị của B khi x = 25;

b) Rút gọn biểu thức M = A.B;

c) Tìm x sao cho \(M< \sqrt{M}.\)

Câu 2:

a) Khi uống nước giải khát, người ta hay sử dụng ống hút bằng nhựa hình trụ có đường kính đáy là 0,4cm, độ dài trục là 16cm. Hỏi khi thải ra môi trường, diện tích nhựa gây ô nhiễm môi trường do 100 ống hút này gây ra là bao nhiêu?

b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Tìm số tự nhiên có hai chữ số mà hiệu giữa chữ số hàng chục và chữ số hàng đơn vị là 3. Còn tổng các bình phương hai chữ số của số đó bằng 45.

Câu 3:

1) Xác định tọa độ các giao điểm của parabol (P): y = x2 và đường thẳng (d): \(y=\sqrt{3}x-\sqrt{3}+1.\)

2) Cho hệ phương trình: \(\left\{{}\begin{matrix}\left|x\right|+y=m\\2\left|x\right|-y=1\end{matrix}\right.\)

a) Giải hệ phương trình khi m = -1;

b) Tìm m để hệ phương trình có hai nghiệm phân biệt.

Câu 4:

Cho đường tròn (O;R) đường kính AB. Bán kính OC⊥AB tại O. Điểm M thuộc cung nhỏ AC. Nối BM cắt AC tại H. Kẻ HK⊥AB tại K. Lấy E thuộc đoạn thẳng MB sao cho BE = AM.

a) Chứng minh tứ giác BCHK là tứ giác nội tiếp;

b) Chứng minh tam giác CME vuông cân;

c) Chứng minh OCMK là tứ giác nội tiếp và tâm đường trong ngoại tiếp tam giác MCK luôn thuộc một đường thẳng cố định khi M di chuyển trên cung nhỏ AC.

Câu 5:

Giải phương trình: \(\left(x^2-5x+1\right)\left(x^2-4\right)=6\left(x-1\right)^2.\)

5
23 tháng 4 2021

Câu 2:

a,

diện tích nhựa là: 2π. (0,4:2). 16= 6,4π (cm2)

b,

gọi chữ số hàng chục là a  (a>0, a ∈N) 

hàng đơn vị là b (b∈N)

hiệu 2 chữ số là: a-b=3 (1)

tổng bình phương 2 chữ số là: a2+b2=45 (2) 

từ (1) và (2) ta có hpt:

\(\left\{{}\begin{matrix}a-b=3\\a^2+b^2=45\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=6\\b=3\end{matrix}\right.\)

vậy chữ số đó là 63

 

25 tháng 4 2021

Câu 1

a, Thay x=25 vào biểu thức B ta có

B=\(\dfrac{\sqrt{25}-3}{\sqrt{25}-1}=\dfrac{5-3}{5-1}=\dfrac{2}{4}=\dfrac{1}{2}\)

b, Ta có M=\(A\cdot B\)

\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

=\(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

=\(\dfrac{3x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{1}{\sqrt{x}-1}\)

=\(\dfrac{3\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

=\(\dfrac{3\sqrt{x}}{\sqrt{x}+3}\)

c,  Để M<\(\sqrt{M}\)

Thì\(\text{​​}\text{​​}\text{​​}\text{​​}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}+3}}\)

\(\text{​​}\text{​​}\text{​​}\text{​​}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \dfrac{\sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}}{\sqrt{x}+3}\)

\(\text{​​}\text{​​}\text{​​}\text{​​}3\sqrt{x}< \sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(\text{​​}\text{​​}\text{​​}\text{​​}9x< 3\sqrt{x}\left(\sqrt{x}+3\right)\)

\(\text{​​}\text{​​}\text{​​}\text{​​}3\sqrt{x}< \sqrt{x}+3\)

\(\text{​​}\text{​​}\text{​​}\text{​​}2\sqrt{x}< 3\)

\(\text{​​}\text{​​}\text{​​}\text{​​}\sqrt{x}< \dfrac{3}{2}\)

\(\left\{{}\begin{matrix}x\ge0\\x< \dfrac{9}{4}\end{matrix}\right.\)

\(0\le x< \dfrac{9}{4}\)