Câu 1:
Cho hai biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\) và \(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)\) với \(x\ge0,x\ne1.\)
a) Tính giá trị của biểu thức B khi x = 4;
b) Rút gọn biểu thức M = A.B;
c) Tìm x để \(M=\dfrac{\sqrt{x}}{6}.\)
Câu 2:
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.
Câu 3:
1. Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{3}{y}=4\\\dfrac{5}{x}-\dfrac{2}{y}=3\end{matrix}\right.\)
2. Cho phương trình \(x^4-\left(m+2\right)x^2+m+1=0\) (1)
a) Giải phương trình (1) khi m = 2;
b) Tìm m để phương trình (1) có 4 nghiệm phân biệt.
Câu 4:
Cho đường tròn (O;R). Điểm M ở ngoài đường tròn sao cho OM = 2R. Kẻ hai tiếp tuyến MA, MB với đường tròn (A; B là các tiếp điểm). Nối OM cắt AB tại H. Hak HD ⊥ MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F.
a) Chứng minh MAOB là tứ giác nội tiếp;
b) Chứng minh OH.OM = OA2;
c) Đường tròn đường kính MB cắt BD tại I, gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng.
Câu 5:
Tính diện tích xung quanh của hình nón có đường sinh bằng 10cm, đường kính đáy bằng 8cm.
Chúc các em ôn thi tốt!
a: \(=\dfrac{\left(2+\sqrt{3}-1\right)\cdot\sqrt{3}}{\sqrt{7+4\sqrt{3}-2-\sqrt{3}+1}}\)
\(=\dfrac{\left(\sqrt{3}+1\right)\cdot\sqrt{3}}{\sqrt{6+3\sqrt{3}}}=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{1}{2\sqrt{3}+3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{\sqrt{3}\left(2-\sqrt{3}\right)}{3}}\)
\(=\left(\sqrt{3}+1\right)\cdot\sqrt{\dfrac{2-\sqrt{3}}{\sqrt{3}}}\)
\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)}{\sqrt{3}}}\)
\(=\sqrt{\dfrac{8-6}{\sqrt{3}}}=\sqrt{\dfrac{2\sqrt{3}}{3}}\)
c: \(=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}+...-\sqrt{1994}+\sqrt{1995}\)
\(=\sqrt{1995}-1\)