K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

\(-2005< x\le2005\)

Vì \(x\in Z\)

\(\Leftrightarrow x\in\left(-2004;-2003;-2002;...;0;...;2003;2004\right)\)

29 tháng 7 2018

 Do x thuộc Z và  ( - 2005) < x < 2005 

    => x c { -2004;-2003;-2002;-2001; . . . . . . 2004 } 

30 tháng 7 2015

a) Tổng các số x là (-2004) + (-2003) + ... + 0 + ... + 2003 + 2004 + 2005

= (-2004 + 2004) + (-2003 + 2003) + ... + 0 + 2005 = 2005

b) Tích các số x là (-2004).(-2003).....0.....2003.2004.2005 = 0

21 tháng 7 2019

x={ -2004; -2003; -2002;....2005}

21 tháng 7 2019

x=(2004 ; -2003 ;-2002;............2005)

Bài này dễ vậy mk ko làm được à

~Study well~ :)

3 tháng 8 2016

ngu the . bang 2500.2bang 5000

31 tháng 12 2017

bạn kia làm sai rồi, tích các số nguyên x thỏa mãn đề bài cơ mà

ta thấy từ -2005 đến 2005 sẽ tônd tại 1 giá trị của x =0 => tích các số nguyên x thỏa mãn đề bài sẽ =0

^_^

30 tháng 6 2019

Bài bạn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★  có vài chỗ sai xót cần sửa lại

Còn đây là cách của mình

Để A= \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên 

thì đồng thời \(\sqrt{\frac{2005}{x+y}}\);\(\sqrt{\frac{2005}{y+z}}\);\(\sqrt{\frac{2005}{x+z}}\)là số hữu tỉ

Xét \(\sqrt{\frac{2005}{x+y}}\)là số hữu tỉ 

+  \(2005⋮x+y\)

Do 2005 có duy nhất ước 1 là số chính phương

=> \(x+y=2005\)

Khi đó \(A=1+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số chính phương khi \(\sqrt{\frac{2005}{y+z}}=\sqrt{\frac{2005}{x+z}}=1\)hoặc\(=\frac{1}{2}\)

=> \(x=y=\frac{2005}{2}\)loại

\(x+y⋮2005\)và \(x+y\ne2005\)

=> \(x+y=2005.k^2\)\(k\inℕ^∗,k>1\))

Tương tự :\(y+z=2005.h^2\)

                \(x+z=2005.g^2\)\(h,g\inℕ^∗;h,g>1\)=> \(2\left(x+y+z\right)=2005\left(k+h+g\right)\)

=> \(A=\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\)

Mà \(A\ge1\)

=> \(\frac{3}{2}\ge\frac{1}{k}+\frac{1}{h}+\frac{1}{g}\ge1\)

=> \(\frac{1}{k}+\frac{1}{h}+\frac{1}{g}=1\)

Giả sử \(k\ge h\ge g\)=> \(\frac{1}{k}\le\frac{1}{h}\le\frac{1}{g}\)

=> \(1\le\frac{3}{g}\)=> \(g\le3\)Mà g>1 => \(g\in\left\{2;3\right\}\)

Với \(g=2\)=> \(k+h\)chẵn => \(\frac{1}{k}+\frac{1}{h}=\frac{1}{2}\)=> \(\frac{h+k}{k.h}=\frac{1}{2}\)=> \(k.h\)chẵn => k ; h chẵn

\(\frac{1}{2}\le\frac{2}{h}\)=> \(h\le4\)=> \(h\in\left\{2;4\right\}\)

Thay vào ta được \(h=4;k=4\)

Khi đó \(\hept{\begin{cases}x+y=2005.4\\y+z=2005.16\\x+z=2005.16\end{cases}}\)= >\(\hept{\begin{cases}x=2005.2\\y=2005.2\\z=2005.14\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left(2005.2;2005.2;2005.14\right)\)và các hoán vị

Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì

\(\hept{\begin{cases}\frac{2005}{x+y}\\\frac{2005}{y+z}\\\frac{2005}{x+z}\end{cases}}\)là bình phương của 1 số hữu tỉ

Gỉa sử đặt \(\frac{2005}{x+y}=\left(\frac{a}{b}\right)^2\Leftrightarrow\frac{a^2\left(x+y\right)}{b^2}=2005\)

\(\Rightarrow\orbr{\begin{cases}a^2⋮2005\\x+y⋮2005\end{cases}}\)

Xét \(a^2⋮2005\Rightarrow a^2=2005k\left(k\inℕ^∗\right)\)

\(\Rightarrow\frac{2005}{x+y}=\frac{2005k}{b^2}\)\(\Rightarrow b^2=\left(x+y\right)k\)

mà x,y nguyên dương=> x+y=k

\(\Rightarrow b^2⋮2005\)\(\Rightarrow x+y⋮2005\)\(\Rightarrow x+y=2005\)

Tương tự y+z=z+x=2005

Thay vào ta thấy không có giá trị x,y,z thỏa mãn đề bài

Xét \(x+y⋮2005\)

\(\Rightarrow\frac{2005}{x+y}=\frac{1}{h^2}\left(h\inℕ^∗\right)\)

Tương tự \(\frac{2005}{y+z}=\frac{1}{m^2},\frac{2005}{x+z}=\frac{1}{n^2}\left(m,n\inℕ^∗\right)\)

Để \(\sqrt{\frac{2005}{x+y}}+\sqrt{\frac{2005}{y+z}}+\sqrt{\frac{2005}{x+z}}\)là số nguyên thì

\(\frac{1}{h}+\frac{1}{m}+\frac{1}{n}⋮3\)

\(\Rightarrow2005⋮3\)(vô lí)

Vậy không có giá trị x,y,z nguyên dương thỏa mãn đề bài

P/s: Em không biết đúng không nữa, mong cô sửa hộ