Cho a,b,c >0. Chứng minh:
\(\dfrac{a^2}{b^5}+\dfrac{b^2}{c^5}+\dfrac{c^2}{a^5}\ge\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2\ge5\sqrt[5]{\dfrac{a^{20}b^2}{b^{12}}}=5.\dfrac{a^4}{b^2}\)
\(\Rightarrow4.\dfrac{a^5}{b^3}+b^2\ge5.\dfrac{a^4}{b^2}\)
Tương tự: \(4.\dfrac{b^5}{c^3}+c^2\ge5\dfrac{b^4}{c^2};4\dfrac{c^5}{a^3}+a^2\ge5.\dfrac{c^4}{a^2}\)
\(\Rightarrow4\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
Lại có: \(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5a^2\)
\(\Rightarrow2.\dfrac{a^5}{b^3}+3b^2\ge5a^2\), tương tự: \(2.\dfrac{b^5}{c^3}+3c^2\ge5b^2;2\dfrac{c^5}{a^3}+3a^2\ge5c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)
\(\Rightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}+4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge4.\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+a^2+b^2+c^2\ge5.\left(\dfrac{c^4}{a^2}+\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}\right)\)
\(\Rightarrow dpcm\)
giả sử \(a>b>c>0\) thì ta có :
\(\dfrac{a^4}{b^2}\left(\dfrac{a}{b}-1\right)+\dfrac{b^4}{c^2}\left(\dfrac{b}{c}-1\right)+\dfrac{c^4}{a^2}\left(\dfrac{c}{a}-1\right)\ge\dfrac{2a^2b}{c}+\dfrac{c^5}{a^3}-\dfrac{c^4}{a^2}\)
\(\ge\dfrac{2c^4b}{a}-\dfrac{c^4}{a^2}=\dfrac{c^4}{a}\left(2b-\dfrac{1}{a}\right)>0\)
làm tương tự cho trường hợp \(c>b>a>0\) ; \(b>a>c\) và \(b>c>a\)
\(\Rightarrow\left(đpcm\right)\)
mấy câu cậu câu đăng khác bn làm tương tự nha . nếu bn lm không được thì có j mk lm luôn cho còn h mk bạn rồi :(
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{a^5}{b^2(c+3)}+\frac{b(c+3)}{16}+\frac{ab}{4}\geq \frac{3}{4}a^2\)
Tương tự với các phân thức còn lại và cộng theo vế:
\(A+\frac{5}{16}ab+\frac{3(a+b+c)}{16}\geq \frac{3}{4}(a^2+b^2+c^2)\)
Mà theo BĐT AM-GM dễ thấy \(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow A\geq \frac{7}{16}(a^2+b^2+c^2)-\frac{3}{16}(a+b+c)\)
Áp dụng BĐT AM-GM tiếp:
$a^2+1\geq 2a; b^2+1\geq 2b; c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)\geq a+b+c+3\sqrt[3]{abc}=a+b+c+3$
$\Rightarrow a^2+b^2+c^2\geq a+b+c\Rightarrow A\geq \frac{1}{4}(a+b+c)\geq \frac{1}{4}\sqrt[3]{abc}=\frac{3}{4}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Mình vừa sửa lỗi công thức, bạn load lại để xem nhé.
\(\dfrac{a^5}{b^2\left(c+3\right)}+\dfrac{b^2}{4}+\dfrac{a\left(c+3\right)}{16}\ge3\sqrt[3]{\dfrac{a^6b^2\left(c+3\right)}{64b^2\left(c+3\right)}}=\dfrac{3}{4}a^2\)
Tương tự: \(\dfrac{b^5}{c^2\left(a+3\right)}+\dfrac{c^2}{4}+\dfrac{b\left(a+3\right)}{16}\ge\dfrac{3}{4}b^2\)
\(\dfrac{c^5}{a^2\left(b+3\right)}+\dfrac{a^2}{4}+\dfrac{c\left(b+3\right)}{16}\ge\dfrac{3}{4}c^2\)
Cộng vế:
\(A+\dfrac{a^2+b^2+c^4}{4}+\dfrac{ab+bc+ca}{16}+\dfrac{9}{16}\ge\dfrac{3}{4}\left(a^2+b^2+c^2\right)\)
\(\Rightarrow A\ge\dfrac{1}{2}\left(a^2+b^2+c^2\right)-\dfrac{ab+bc+ca}{16}-\dfrac{9}{16}\ge\dfrac{1}{2}\left(a^2+b^2+c^2\right)-\dfrac{a^2+b^2+c^2}{16}-\dfrac{9}{16}\)
\(\Rightarrow A\ge\dfrac{7}{16}\left(a^2+b^2+c^2\right)-\dfrac{9}{16}\ge\dfrac{7}{16}.3\sqrt[3]{\left(abc\right)^2}-\dfrac{9}{16}=\dfrac{3}{4}\) (đpcm)
Xét \(\dfrac{a}{a^2+1}+\dfrac{3\left(a-2\right)}{25}-\dfrac{2}{5}=\dfrac{a}{a^2+1}+\dfrac{3a-16}{25}=\dfrac{\left(3a-4\right)\left(a-2\right)^2}{25\left(a^2+1\right)}\ge0\)
\(\Rightarrow\dfrac{a}{a^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(a-2\right)}{25}\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{b^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(b-2\right)}{25}\\\dfrac{c}{c^2+1}\ge\dfrac{2}{5}-\dfrac{3\left(c-2\right)}{25}\end{matrix}\right.\)
Cộng vế theo vế:
\(\Rightarrow VT\ge\dfrac{2}{5}+\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3\left(a-2\right)+3\left(b-2\right)+3\left(c-2\right)}{25}\ge\dfrac{6}{5}-\dfrac{3\left(a+b+c-6\right)}{25}=\dfrac{6}{5}\)
Dấu \("="\Leftrightarrow a=b=c=2\)
áp dụng bdt côsi \(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{3}{b}\)
tuông tu \(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{3}{a}\)
suy ra vt +\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
suy ra dpcm
dau = xay ra khi a=b=c
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Ta có:
\(\sum\left(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\right)\ge5\sum a^2\)
\(\Leftrightarrow2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge5\left(a^2+b^2+c^2\right)-3\left(a^2+b^2+c^2\right)=2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)
Ap dung BDT Cauchy-Schwarz ta co:
\(\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\left(\dfrac{b^3}{a}+\dfrac{c^3}{b}+\dfrac{a^3}{c}\right)\ge\left(a^2+b^2+c^2\right)^2\)
Can chung minh \(\dfrac{b^3}{a}+\dfrac{c^3}{b}+\dfrac{a^3}{c}\ge a^2+b^2+c^2\)
\(VT=\dfrac{a^4}{ac}+\dfrac{b^4}{ab}+\dfrac{c^4}{bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2=VP\)
\("="\Leftrightarrow a=b=c\)
Áp dụng BĐT \(AM-GM\) ta có :
\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2\ge5\sqrt[5]{\dfrac{a^{15}b^4}{b^9}}=5\dfrac{a^3}{b}\)
\(\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+c^2+c^2\ge5\sqrt[5]{\dfrac{b^{15}c^4}{c^9}}=5\dfrac{b^3}{c}\)
\(\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+a^2+a^2\ge5\sqrt[5]{\dfrac{c^{15}a^4}{a^9}}=5\dfrac{c^3}{a}\)
Cộng từng vế của BĐT ta được :
\(3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(a^2+b^2+c^2\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)
Tiếp tục áp dụng BĐT \(AM-GM\) ta lại có :
\(\dfrac{a^5}{b^3}+\dfrac{a^5}{b^3}+b^2+b^2+b^2\ge5\sqrt[5]{\dfrac{a^{10}b^6}{b^6}}=5a^2\)
\(\dfrac{b^5}{c^3}+\dfrac{b^5}{c^3}+c^2+c^2+c^2\ge5\sqrt[5]{\dfrac{b^{10}c^6}{c^6}}=5b^2\)
\(\dfrac{c^5}{a^3}+\dfrac{c^5}{a^3}+a^2+a^2+a^2\ge5\sqrt[5]{\dfrac{c^{10}a^6}{a^6}}=5c^2\)
Cộng vế theo vế ta được :
\(2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+3\left(a^2+b^2+c^2\right)\ge5\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge a^2+b^2+c^2\)
\(\Rightarrow3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge3\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)+2\left(a^2+b^2+c^2\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)
\(\Leftrightarrow5\left(\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\right)\ge5\left(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\right)\)
\(\Leftrightarrow\dfrac{a^5}{b^3}+\dfrac{b^5}{c^3}+\dfrac{c^5}{a^3}\ge\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\left(đpcm\right)\)