Cho tam giác ABC , AM là đường trung tuyến . Vẽ đường thẳng d qua trung điểm I của AM cắt các cạnh AB,AC.Gọi A',B',C' lần lượt là hình chiếu của A,B,C trên đường thằng d.
CHứng minh : = \(AA'=\frac{BB'+CC'}{2}\)
Ai nhanh và đúng nhất mình tick cho nhé !
Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 8 - Học toán với OnlineMath tham khảo
Sửa lại bài:
Kẻ MN vuông góc với B'C'
Ta có: BB'//CC'(cùng vuông góc với d)<=>tứ giác BB'CC' là hình thang
Mà MN//BB'(cùng vuông góc với d)
Suy ra: BB'//MN//CC'
Xét hình thang BB'CC' có:
BB'//MN//CC' và BM=MC(gt)
Suy ra: N là trung điểm B'C'<=> B'N=C'N
Mà BM=MC
Suy ra: MN là đường trung bình của hình thang BB'CC'
Suy ra: \(MN=\frac{BB'+CC'}{2}\)(1)
Dễ chứng minh: \(\Delta_vAA'I=\Delta_vMNI\left(ch-gn\right)\)
Suy ra: \(AA'=MN\)(2)
Từ (1) và (2):
Suy ra" \(AA'=\frac{BB'+CC'}{2}\)
Vậy.....