cho tam giác ABC cân tại A có góc A =110 độ . lấy D thuộc BC sao cho ADC = 105 độ . qua C kẻ đường thẳng song song vs AD cắt tia BA ở E. c/m
a, AE<CA=CE
b, EC<BC<BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HÌnh bạn tự vẽ nha.
Xét \(\Delta\) ABC cân tại A có : góc A + 2 góc B = 180 độ
Mà góc A =110 độ (gt)
\(\Rightarrow\)Góc B = 35 độ
Xét \(\Delta\) ABD có : góc BAD + góc B + ADC = 180 độ
Mà góc B = 35 độ (cmt) , ADC = 105 độ
\(\Rightarrow\)BAD = 180-35-105=40 độ
Mà CE // AD (gt)
\(\Rightarrow\)Góc E bằng 40 độ ( 2 góc đồng vị )
Xét \(\Delta\)BCE có : góc E + góc B + BCE = 180 độ (đ/l)
Mà E = 40 độ (cmt) , B = 35 độ (cmt)
\(\Rightarrow\)BCE = 180-40-35=105 độ
\(\Rightarrow\)BCE>E>B (105>40>35)
\(\Rightarrow\)BE>BC>CE (Quan hệ giữa cạnh và góc đối diện )
Hay EC<BC<BE
_HT_
\(\widehat{EAC}=180^o-\widehat{BAC}=180^o-110^o=70^o\)
Tam giác ABC cân ở A nên \(\widehat{ACB}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-110^o}{2}=35^o\) (1)
CE // AD => \(\widehat{ECD}+\widehat{ADC}=180^o\) (\trong cùng phía)
=> \(\widehat{ECD}=180^o-\widehat{ADC}=180^o-105^o=75^o\) (2)
Ta lại có: \(\widehat{ACE}=\widehat{ECD}-\widehat{ACB}=75^o-35^o=40^o\)
Trong tam giác ACE có \(\widehat{EAC}=70^o;\widehat{ACE}=40^o\)
nên góc còn lại \(\widehat{AEC}=180^o-70^o-40^o=70^o\)
Vậy tam giác ACE cân ở C và ta có:
\(70^o=\widehat{A}=\widehat{E}>\widehat{C}=40^o\)
CA = CE > AE
a, Ta có: AB=AC => tg ABC cân tại A
=>\(\widehat{B_1}=\widehat{C_1}=\frac{180^o-100^o}{2}=40^o\)
BF//AC => \(\widehat{B_2}=\widehat{C_1}=40^o\left(slt\right);\widehat{BFA}=\widehat{CAF}\left(slt\right)\)
Mà \(\widehat{CAF}=\widehat{BAC}-\widehat{BAE}=100^o-60^o=40^o\)
=>\(\widehat{B_2}=\widehat{BFA};\widehat{C_1}=\widehat{CAF}\)
=> tg EFB cân tại E ; tg EAC cân tại E
=> EF=EB ; EA=EC
=>EF + EA = EB + EC
Mà E nằm giữa F,A và B,C
=> AF = BC mà BC=AD (gt)
=>AF = AD
=> tg ADF cân tại A
Mà góc DAF = 60 độ (gt)
=>tg ADF đều
I don't now
mik ko biết
sorry
......................
quá dễ bạn trả lời cho[lừa thôi]