cho \(2x-y=9\) tính giá trị của biểu thức
P=\(8x^3-12x^2y+6xy^2-y^3+12x^2+3y^2+6x-3y+11\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`8x^3 - 12x^{2} y + 6xy^2 - y^3 + 12x^2 - 12xy + 3y^2 + 11`
`=(8x^3 - 12x^{2}y + 6xy^{2} - y^{3}) + 3(4x^2 - 4xy + y^2) + 11`
`=(2x-y)^{3} + 3(2x-y)^2 + 11`
Thay `2x-y=9` vào `:`
`9^3 + 3 . 9^2 + 11`
`=729 + 243 + 11`
`=983`
A=8x^3-12x^2y+6xy^2-y^3+12x^2-12xy+3y^2+11
=(2x-y)^3+4(2x-y)^2+11
Khi 2x-y=9 thì A=9^3+4*9^2+11
=1064
Bài 1:
a: \(M=3\left[\left(x+y\right)^2-2xy\right]-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+1\)
\(=3\left(4-2xy\right)-\left[8-6xy\right]+1\)
\(=12-6xy-8+6xy+1=5\)
b: \(N=\left(2x-y\right)^3+3\left(2x-y\right)^2+3\left(2x-y\right)+11\)
\(=9^3+3\cdot9^2+3\cdot9+11\)
=729+243+27+11
=729+270+11=1010
a) P = \(x^2+3x+y^2-3y-2xy+90\)
= \(\left(x-y\right)^2+3\left(x-y\right)+90\)
= \(5^2+3.5+90=130\)
b) P = \(4x^2+9y^2-12xy-12x+24xy-18y+118\)
= \(4x^2+9y^2+12xy-12x-18y+118\)
= \(\left(2x+3y\right)^2-6\left(2x+3y\right)+118\)
= \(\left(-7\right)^2-6.\left(-7\right)+118=209\)
\(\left(2x-y\right)^3=\left(2x\right)^3-3\left(2x\right)^2y+3\cdot2x\cdot y^2-y^3\\ =8x^3-12x^2y+6xy^2-y^3\)
Chọn \(12x^2y\)
\(P=\left(2x-y\right)^3+3\left(2x-y\right)+12x^2+3y^2+11\)
\(=9^3+3\cdot9+3\left(4x^2+y^2\right)+11\)
\(=119+3\left[4x^2+y^2+4xy-4xy\right]\)
\(=119+3\cdot\left[\left(2x-y\right)^2+4xy\right]\)
\(=119+3\cdot\left[9^2+4xy\right]\)
\(=119+243+12xy\)
\(=362+12xy\)