Cho \(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)...\left(\dfrac{1}{400}-1\right)\)
So sánh \(A\) với \(\dfrac{-1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A = 3/4 xx 8/9 xx ... xx 99/100`
`= (1xx3)/(2xx2) xx (2xx4)/(3xx3) xx ... xx (9xx11)/(10xx10)`
`= (1xx2xx3xx ... xx 9)/(2xx3xx...xx10) xx (3xx4xx5xx...xx 11)/(2xx3xx4xx...xx 10)`
`= 1/10 xx 11`
`= 11/10`.
Ta có: `11/10 > 1`
`11/19 < 1`.
`=> A > 11/19`.
a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)
\(=-\dfrac{1}{10}\)
9<10
=>1/9>1/10
=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)
=>\(A>-\dfrac{1}{9}\)
b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)
\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)
20<21
=>\(\dfrac{11}{20}>\dfrac{11}{21}\)
=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)
=>\(B< -\dfrac{11}{21}\)
\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{99}{100}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{9.11}{10.10}=\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{9}{10}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{11}{10}\right)=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{9}\right)\left(1+\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\\ B=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{8}{9}\cdot\dfrac{9}{10}\right)\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{10}{9}\cdot\dfrac{11}{10}\right)\\ B=\dfrac{1}{10}\cdot\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)
Ta có:
\(A=\left(\dfrac{1}{2}-1\right)\cdot\left(\dfrac{1}{3}-1\right)\cdot\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{10}-1\right)\)
\(A=-\dfrac{1}{2}\cdot-\dfrac{2}{3}-\dfrac{3}{4}\cdot...\cdot-\dfrac{9}{10}\)
\(A=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-9}{2\cdot3\cdot4\cdot...\cdot10}\)
\(A=-\dfrac{1}{10}\)
Mà: \(10>9\)
\(\Rightarrow\dfrac{1}{10}< \dfrac{1}{9}\)
\(\Rightarrow-\dfrac{1}{10}>-\dfrac{1}{9}\)
\(\Rightarrow A>-\dfrac{1}{9}\)
\(A=\left(\dfrac{1}{4}-1\right).\left(\dfrac{1}{9}-1\right)....\left(\dfrac{1}{100}-1\right).\)
\(\Rightarrow A=\left(-\dfrac{3}{4}\right).\left(-\dfrac{8}{9}\right)....\left(-\dfrac{99}{100}\right)\)
mà A có 9 dấu - \(\left(4;9;16;25;36;49;64;81;100\right)\)
\(\Rightarrow0>A=\left(-\dfrac{3}{4}\right).\left(-\dfrac{8}{9}\right)....\left(-\dfrac{99}{100}\right)=-\dfrac{1}{2}\)
Ta lại có \(\left\{{}\begin{matrix}\dfrac{1}{2}=\dfrac{21}{42}\\\dfrac{11}{21}=\dfrac{22}{42}\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2}< \dfrac{11}{21}\Rightarrow-\dfrac{1}{2}>-\dfrac{11}{21}\)
\(\Rightarrow A>-\dfrac{11}{21}\)
\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)...\left(\dfrac{1}{100}-1\right)\)
\(A=\left(-\dfrac{2^2-1}{2^2}\right)\left(-\dfrac{3^2-1}{3^2}\right)...\left(-\dfrac{10^2-1}{10^2}\right)\)
\(A=\left[-\dfrac{1\cdot3}{2\cdot2}\right]\left[-\dfrac{2\cdot4}{3\cdot3}\right]...\left[-\dfrac{9\cdot11}{10\cdot10}\right]\)
Dễ thấy A có 9 thừa số, suy ra
\(A=-\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot9\cdot11}{2\cdot2\cdot3\cdot3\cdot...\cdot10.10}=-\dfrac{1\cdot11}{2\cdot10}=\dfrac{-11}{20}\)
Vì 20 < 21 nên \(\dfrac{11}{20}>\dfrac{11}{21}\), suy ra \(\dfrac{-11}{20}< \dfrac{-11}{21}\)
Vậy \(A< \dfrac{-11}{21}\)
Sửa đề: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)\cdot...\cdot\left(\dfrac{1}{400}-1\right)\)
Ta có: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)\cdot...\cdot\left(\dfrac{1}{400}-1\right)\)
\(=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot\dfrac{-15}{16}\cdot...\cdot\dfrac{-399}{400}\)
\(=\dfrac{-3\cdot8\cdot15\cdot...\cdot399}{4\cdot9\cdot16\cdot...\cdot400}\)
\(=\dfrac{-3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot19\cdot21}{2^2\cdot3^2\cdot4^2\cdot...\cdot20^2}\)
\(=\dfrac{-2\cdot3\cdot4\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot21}{2\cdot3\cdot4\cdot20}\)
\(=\dfrac{-1}{20}\cdot\dfrac{21}{2}\)
\(=\dfrac{-21}{40}\)
\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)
\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)
\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)
\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)
Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B
\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)
\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)
\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)
\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)
\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)
\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)
\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)
\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
\(\Rightarrow B< \dfrac{1}{2}\)
\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)...\left(\dfrac{1}{400}-1\right)\)
\(=\left(\dfrac{-3}{4}\right)\left(\dfrac{-8}{9}\right)\left(\dfrac{-15}{16}\right)...\left(\dfrac{-399}{400}\right)\)
\(=\dfrac{-3.8.15...399}{4.9.16...400}\)
\(=\dfrac{-3.2.4.3.5...21.19}{2^2.3^2.4^2...20^2}\)
\(=\dfrac{-2.3.4...19}{2.3.4...20}.\dfrac{3.4.5...21}{2.3.4...20}\)
\(=\dfrac{-1}{20}.\dfrac{21}{2}\)
\(=\dfrac{-21}{40}< \dfrac{-1}{2}\)
Vậy \(A< \dfrac{-1}{2}\)