giải bất phương trình |x+1|>|x-2|
Giúp mình vs mình đang cần gấp>>>>Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{x-2}>1\)
\(\Leftrightarrow\frac{x-1}{x-2}-1>0\)
\(\Leftrightarrow\frac{x-1-x+2}{x-2}>0\)
\(\Leftrightarrow\frac{1}{x-2}>0\)
\(\Rightarrow x-2>0\)
\(\Leftrightarrow x>2\)
(x-1)/(x-2) > 1 (ĐKXĐ: x khác 2)
<=> (x-1)/(x-2) -1 >0
<=> 1/(x-2) >0
<=> x-2 > 0
<=> x>2 (thỏa đkxđ)
a) \(2-x\ge0\Leftrightarrow x\le2\)
b) \(2+x\ge0\Leftrightarrow x\ge-2\)
c) \(7-x\ge0\Leftrightarrow x\le7\)
Ta có : x3 + x2 + 2x - 16 \(\ge0\)
<=> \(x^3-2x^2+3x^2-6x+8x-16\ge0\)
<=> \(x^2\left(x-2\right)+3x\left(x-2\right)+8\left(x-2\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Vì \(x^2+3x+8>0\forall x\)
Nên : \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a, \(2mx-m^2\ge2x-2m+1\Leftrightarrow2x\left(m-1\right)\ge\left(m-1\right)^2\)
Nếu \(m-1\ge0\Leftrightarrow m\ge1\)thì
\(\Leftrightarrow2x\ge m-1\Leftrightarrow x\ge\frac{m-1}{2}\)
Nếu \(m< 1\)thì :
\(\Leftrightarrow2x\le m-1\Leftrightarrow x\le\frac{m-1}{2}\)
b,\(\Leftrightarrow2m-mx+m^2-2m+1>2x+5\Leftrightarrow m^2-4>\left(m+2\right)x\)
Nếu \(\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì
\(\Leftrightarrow x< m-2\)
Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì
\(\Leftrightarrow x>m-2\)
c, \(\Leftrightarrow\left(m^2-m-1-3+m\right)x>5m\)
\(\Leftrightarrow\left(m^2-4\right)x>5m\)
Nếu \(m^2-4\ge0\Leftrightarrow\orbr{\begin{cases}m\le-2\\m\ge2\end{cases}}\)thì
\(x>\frac{5m}{m^2-4}\)
Nếu \(m^2-4< 0\Leftrightarrow-2< m< 2\)thì
\(x< \frac{5m}{m^2-4}\)
x^2+2x>5x
x^2-3x>0
x(x-3)>0
=>x>0 và x-3 >0 hoặc x<0 và x-3<0
+x>0 va x-3>0
=> x>0 va x>3
=>x>3
+x<0 và x-3<0
=> x<0 và x<3 v
=> x<0
Vậy x>3 hoặc x<0
bài 1
\(\frac{x-1}{x+3}>0\) \(\left(x\ne-3\right)\)
TH1 \(\hept{\begin{cases}x-1>0\\x+3< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>1\\x< -3\end{cases}}\)(vô lí)
TH2 \(\hept{\begin{cases}x-1< 0\\x+3>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-3\end{cases}}\)\(\Rightarrow-3< x< 1\)
bài 2 . với dạng này ta áp dụng bđt \(|x|< A\Leftrightarrow\orbr{\begin{cases}x< -A\\x>A\end{cases}}\)
|x - 5| >2
\(\Leftrightarrow\orbr{\begin{cases}x-5>2\\x-5< -2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>7\\x< 3\end{cases}}\)
#mã mã#
Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)
=>x+1>x-2 hoặc x+1<-x+2
=>1>-2(luôn đúng) hoặc 2x<1
=>x<1/2