Chứng minh rằng:
a) P = \(369^3\) - \(219^3\) chia hết cho 1350
b) Q = \(372^3\) + \(128^3\) chia hết cho 8000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(M=3\left[\left(x+y\right)^2-2xy\right]-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+1\)
\(=3\left(4-2xy\right)-\left[8-6xy\right]+1\)
\(=12-6xy-8+6xy+1=5\)
b: \(N=\left(2x-y\right)^3+3\left(2x-y\right)^2+3\left(2x-y\right)+11\)
\(=9^3+3\cdot9^2+3\cdot9+11\)
=729+243+27+11
=729+270+11=1010
Ta có:\(B=3-10x^2-4xy-4y^2\)
\(=3-9x^2-x^2-4xy-4y^2\)
\(=3-9x^2-\left(x^2+4xy+4y^2\right)\)
\(=3-\left(3x\right)^2-\left(x+2y\right)^2\)
Vì \(\hept{\begin{cases}\left(3x\right)^2\ge0\\\left(x+2y\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}-\left(3x\right)^2\le0\\-\left(x+2y\right)^2\le0\end{cases}}\)
\(\Rightarrow B=3-\left(3x\right)^2-\left(x+2y\right)^2\le3-0-0=3\)
Nên GTLN của B là 3 đạt được khi \(\hept{\begin{cases}3x=0\\x+2y=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=-x\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\2y=0\end{cases}\Leftrightarrow}x=y=0\)
Sửa đề:
\(A=372^3+128^3=\left(372+128\right)\left(372^2-372.128+128^2\right)\)
\(=500\left[\left(93.4\right)^2-\left(93.4\right).\left(32.4\right)+\left(32.4\right)^2\right]\)
\(=500.16.\left(93^2-93.32+32^2\right)=8000.\left(93^2-93.32+32^2\right)\)
Vậy A chia hết cho 8000
Hãy lấy máy tình ra và tính cái hiệu đó đi.Bạn là thấy 1 điều hiển nhiên rằng:Đề sai
1. Ta có: \(372^3=51478848\)
\(128^3=2097152\)
\(\Rightarrow372^3+128^3=53576000\)
Mà 53576000:8000 = 6697
\(\Rightarrow\left(372^3+128^3\right)⋮8000\left(đpcm\right)\)
\(3.3^{123}:80\)
Ta có: \(3^4\equiv1\left(mod80\right)\)
\(\Rightarrow\left(3^4\right)^{30}\equiv1^{30}\equiv1\left(mod80\right)\)
\(\Rightarrow3^{120}.3^3\equiv1.27\equiv27\left(mod80\right)\)
Vậy khi chia \(3^{123}\)cho 80 thì dư 27
a: \(P=3^3\left(123^3-73^3\right)\)
\(=3\cdot9\cdot\left(123-73\right)\cdot A=1350\cdot A\cdot3⋮1350\)
b: \(=4^3\left(93^4+32^4\right)\)
\(=4^3\left(93+32\right)\cdot A=125\cdot64\cdot A=8000\cdot A⋮8000\)