Cho 3 số dương x,y,z thoả mãn điều kiện : xy+yz+zx=1. Tính:
\(A=x\sqrt{\dfrac{\left(y^2+1\right)\left(z^2+1\right)}{x^2+1}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Mn giúp e vs an, e đang cần gấp, cảm ơn mn nhiều lắm lắm
Lời giải:
Ta có: \(xy+yz+xz=1\)
\(\Rightarrow \left\{\begin{matrix} x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\\ y^2+1=y^2+xy+yz+xz=(y+z)(y+x)\\ z^2+1=z^2+xy+yz+xz=(z+x)(z+y)\end{matrix}\right.\)
Do đó:
\(\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=\sqrt{\frac{(y+z)(y+x)(z+x)(z+y)}{(x+y)(x+z)}}=\sqrt{(y+z)^2}=y+z\)
\(\Rightarrow x\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=x(y+z)\)
Hoàn toàn tt:
\(y\sqrt{\frac{(z^2+1)(x^2+1)}{y^2+1}}=y(x+z)\); \(z\sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=z(x+y)\)
Do đó:
\(A=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)