1. Cho x,y khác 0. Cmr:
3.(x/y + y/x)-(x2/y2 + y2/x2) <_ 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy< =x^2+y^2=8\Rightarrow x^2+2xy+y^2=\left(x+y\right)^2< =8+8=16\Rightarrow x+y< =4\)
\(P=\dfrac{x^3+y^3}{x^3y^3}=\dfrac{\left(x+y\right)\left(x^2+y^2-xy\right)}{x^3y^3}=\dfrac{x^2y^2\left(x+y\right)}{x^3y^3}=\dfrac{x+y}{xy}=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{x^2+y^2-xy}=\dfrac{4\left(x^2+y^2-xy\right)-3\left(x^2+y^2-2xy\right)}{x^2+y^2-xy}\)
\(=4-\dfrac{3\left(x-y\right)^2}{x^2+y^2-xy}\le4\)
\(P_{max}=4\) khi \(x=y=\dfrac{1}{2}\)
\(x^2-\left(y+1\right)x+y^2-y=0\)
\(\Leftrightarrow x^2-\left(y+1\right)x+\dfrac{1}{4}\left(y+1\right)^2-\dfrac{1}{4}\left(y+1\right)^2+y^2-y=0\)
\(\Leftrightarrow\left(x-\dfrac{y+1}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2-1=0\)
\(\Leftrightarrow\dfrac{3}{4}\left(y-1\right)^2-1=-\left(x-\dfrac{y+1}{2}\right)^2\le0\)
\(\Rightarrow\dfrac{3}{4}\left(y-1\right)^2\le1\)
\(\Rightarrow\left(y-1\right)^2\le\dfrac{4}{3}\)
Ta có :
D = x 2 ( x + y ) − y 2 ( x + y ) + x 2 − y 2 + 2 ( x + y ) + 3 = ( x + y ) x 2 − y 2 + x 2 − y 2 + 2 ( x + y ) + 2 + 1 = x 2 − y 2 ( x + y + 1 ) + 2 ( x + y + 1 ) + 1 = x 2 − y 2 ⋅ 0 + 2 ⋅ 0 + 1 = 1 tai x + y + 1 = 0
Vậy D = 1 khi x + y + 1 = 0
Chọn đáp án D
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru
M=x^2*(-1)-y^2(x-y)+x^2-y^2+100
=-x^2+y^2+x^2-y^2+100
=100
\(M=x^2\left(x-y\right)-y^2\left(x-y\right)+x^2-y^2+100\)
\(=\left(x-y\right)\left(x^2-y^2\right)+x^2-y^2+100\)
\(=\left(x^2-y^2\right)\left(x-y+1\right)+100\)
\(=\left(x^2-y^2\right).0+100\)
\(=100\)
Vậy \(M=100\)
\(a,y_2=kx_2\Rightarrow k=\dfrac{1}{7}:2=\dfrac{1}{14}\\ \Rightarrow y_1=\dfrac{1}{14}x_1\\ \Rightarrow x_1=-\dfrac{3}{4}:\dfrac{1}{14}=-\dfrac{21}{2}\\ b,y_1=kx_1\Rightarrow k=\dfrac{11}{2}:\dfrac{11}{7}=\dfrac{7}{2}\\ \Rightarrow y_2=\dfrac{7}{2}x_2\Rightarrow x_2=-\dfrac{9}{3}:\dfrac{7}{2}=-\dfrac{6}{7}\)
Đặt \(\dfrac{x}{y}=a\Rightarrow\dfrac{y}{x}=\dfrac{1}{a}\)
Viết lại BĐT, ta được:
\(3\left(a+\dfrac{1}{a}\right)-\left(a^2+\dfrac{1}{a^2}\right)\le4\)
\(\Leftrightarrow4-3\left(a+\dfrac{1}{a}\right)+\left(a^2+\dfrac{1}{a^2}\right)\ge0\)
\(\Leftrightarrow4-3a-\dfrac{3}{a}+a^2+\dfrac{1}{a^2}\ge0\)
\(\Leftrightarrow a^2-3a+2+\dfrac{1}{a^2}-\dfrac{3}{a}+2\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{a}-2\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+\dfrac{1-a}{a}.\dfrac{1-2a}{a}\ge0\)
\(\Leftrightarrow\left(a-1\right)\left[a-2+\dfrac{2a-1}{a^2}\right]\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^3-2a^2+2a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a^3-a^2+a-a^2+a-1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)\left[a^2\left(a-1\right)-a\left(a-1\right)+a-1\right]\ge0\)
\(\Leftrightarrow\left(a-1\right)\left(a-1\right)\left(a^2-a+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left[\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\ge0\) ( luôn đúng)
Dấu " = " xảy ra khi: \(a=1\Leftrightarrow x=y\)