Cho tứ giác ABCD
a) CMR :AB+CD<AC+BD
b) Cho biết AD+BD <= AC+BD .CMR AB<AD
các bn giúp mik với mai mik học rồi nhớ vẽ hình 😁😁😁
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có:ABCD là hình chữ nhật
nên AB=CD;AD=BC
2: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Xét ΔADE và ΔCBF có
\(\widehat{D}=\widehat{B}\)
AD=CB
\(\widehat{DAE}=\widehat{BCF}\)
Do đó: ΔADE=ΔCBF
Suy ra: \(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{AEC}=\widehat{CFA}\)
Xét tứ giác AECF có
\(\widehat{AEC}=\widehat{CFA}\)
\(\widehat{FAE}=\widehat{FCE}\)
Do đó: AECF là hình bình hành
Suy ra: AE//CF
có \(AB=CD\left(gia-thiet\right)\)
\(AD\) chung
\(\angle\left(A\right)=\angle\left(D\right)\left(gia-thiet\right)\)(1)
\(=>\Delta BAD=\Delta CDA\left(c.g.c\right)=>AC=BD\)
mà \(BC\) chung
\(AB=CD\)
\(=>\Delta ACB=\Delta DBC\left(c.c.c\right)=>\angle\left(B\right)=\angle\left(C\right)\)
mà \(\angle\left(A\right)+\angle\left(D\right)+\angle\left(B\right)+\angle\left(C\right)=360^o\)
\(=>2\angle\left(A\right)+2\angle\left(B\right)=360^o=>\angle\left(A\right)+\angle\left(B\right)=180^o\)
mà 2 góc ở vị trí trong cùng phía \(=>AD//BC\left(2\right)\)
(1)(2)=>ABCD là hình thang cân
1: Ta có:ABCD là hình chữ nhật
nên AB=CD;AD=BC
2: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Xét ΔADE và ΔCBF có
\(\widehat{D}=\widehat{B}\)
AD=CB
\(\widehat{DAE}=\widehat{BCF}\)
Do đó: ΔADE=ΔCBF
Suy ra: \(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{AEC}=\widehat{CFA}\)
Xét tứ giác AECF có
\(\widehat{AEC}=\widehat{CFA}\)
\(\widehat{FAE}=\widehat{FCE}\)
Do đó: AECF là hình bình hành
Suy ra: AE//CF
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\)(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a: Xét tứ giác ABCD có
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=180^0\)
mà \(\dfrac{\widehat{A}}{7}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{D}}{2}\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{7}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{D}}{2}=\dfrac{360^0}{18}=20^0\)
Do đó: \(\widehat{A}=140^0;\widehat{B}=100^0;\widehat{C}=80^0;\widehat{D}=40^0\)
b: Ta có: \(\widehat{B}+\widehat{C}=180^0\)
mà hai góc này là hai góc trong cùng phía
nên AB//CD
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân