Cho a,b,c thỏa điều kiện : \(\left\{{}\begin{matrix}c>0\\\left(c+a\right)^2< ab+bc-2ac\end{matrix}\right.\). Chứng minh \(ax^2+bx+c=0\)luôn có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta=b^2-4ac\)
Lại có: \(\left(a+c\right)^2< ab+bc-2ac\)
\(\Rightarrow-2ac>b\left(a+c\right)+\left(a+c\right)^2\)
\(\Rightarrow\Delta=b^2-4ac>b^2+2b\left(a+c\right)+2\left(a+c\right)^2\)
\(\Rightarrow\Delta>\left(a+b+c\right)^2+\left(a+c\right)^2>0\)
Suy ra phương trình \(ax^2+bx+c\) luôn có nghiệm
\(\left\{{}\begin{matrix}a+b+c>0\left(1\right)\\ab+bc+ac>0\left(2\right)\\abc>0\left(3\right)\end{matrix}\right.\)
Giả sử trong ba số a,b,c có một số âm hay bằng o . Giả sử số đó là a.
Khi đó : (1) ==> b + c > -a \(\ge\) 0 ==> a(b+c) \(\le0\)
Do đó : (2) ==> bc + a(b+c) > 0 ==> bc > -a ( b+c) \(\ge\) 0 . Mà a < 0 ==> abc < 0 (vô lí vì abc >0 do (3))
Vậy cả ba số a , b ,c đều dương
Ta có (a + c)2 < ab + bc - 2ac
<=> ab + bc - a2 - c2 - 4ac > 0 (1)
Ta lại có a2 + b2 + c2 \(\ge\)ab + bc +ca > ab + bc (2)
Từ (1) và (2) => b2 - 4ac > 0
Vậy PT luôn có nghiệm
3: Ta có \(\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}-1\).
Do đó \(\dfrac{1}{u_{100}}=\dfrac{1}{u_{99}}-1=\dfrac{1}{u_{98}}-2=...=\dfrac{1}{u_1}-99=\dfrac{1}{-2}-99=\dfrac{-199}{2}\Rightarrow u_{100}=\dfrac{-2}{199}\).
Lời giải:
Với $a=0$ thì pt trở thành: \(bx+c=0\)
\((c+a)^2< ab+bc-2ac\Leftrightarrow c^2< bc\Rightarrow c(c-b)< 0\Rightarrow 0< c< b\)
PT luôn có nghiệm \(x=\frac{-c}{b}\)
Với $a\neq 0$
Nếu \(ac<0\Rightarrow b^2-ac>0\Leftrightarrow \Delta>0\) nên pt \(ax^2+bx+c=0\) có nghiệm
Nếu \(ac>0, c>0\Rightarrow a>0\)
Ta có: \((c+a)^2< ab+bc-2ac< ab+bc\) do \(ac>0\)
\(\Leftrightarrow (c+a)^2< b(a+c)\)
Vì \(a>0, c>0\Rightarrow a+c>0\), chia 2 vế cho $a+c$ thu được:
\(0< c+a< b\Rightarrow \Delta'=b^2-4ac>(c+a)^2-4ac=(a-c)^2\geq 0\)
Do đó pt \(ax^2+bx+c=0\) có nghiệm