K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

a) \(a^2-a=a\left(a-1\right)⋮2\) ( Tích 2 số nguyên liên tiếp ⋮ 2 )

b) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)⋮3\)( Tích 3 số nguyên liên tiếp ⋮ 3)

c) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+5-4\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

Ta có:

\(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\) tích 5 số nguyên liên tiếp ⋮ 5

5a (a-1)(a+1) ⋮ 5

Suy ra: a5 - a ⋮ 5

Câu d : Ta có :

\(a^7-a\)

\(=a\left(a^6-1\right)\)

\(=a\left(a^3-1\right)\left(a^3+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

Nếu : \(a=7k\) thì \(a\) chia hết cho 7

Nếu : \(a=7k-1\) thì \(a+1\) chia hết cho 7

Nếu : \(a=7k+1\) thì \(a-1\) chia hết cho 7

Nếu : \(a=7k+2\) thì \(a^2+a+1=49k^2+35k+7\) chia hết cho 7

Nếu : \(a=7k+3\) thì \(a^2-a+1=49k^2+35k+7\) chia hết cho 7

Vì mọi trường hợp đều chia hết cho 7 .

\(\Rightarrow a^7-a⋮7\left(đpcm\right)\)

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

16 tháng 10 2018

a) a2 – a =a(a-1), chia hết cho 2.

b) a3 -a = a( a2 – 1) = a(a-1)(a+1), tích này chia hết cho 3 vì tồn tại một bội của 3.

+ Ở phần a, b học sinh dễ dàng làm được nhờ các bài toán đã quen thuộc

+ Để chứng minh a(a -1 ) chia hết cho 2, ta đã xét số dư của a khi chia cho 2 (hoặc dụng nguyên lý Dirich- le )

c) Cách 1

A = a5 -1= a(a2+1)(a2 -1)

Xét các trường hợp a = 5k, a= 5k ± 1, a=5k ± 2

+Ta vận dụng vào tính chia hết của số nguyên về xét số dư

suy ra A chia hết cho 5.

Cách 2.

A = a5 -1= a(a2+1)(a2 -1)

= a(a2+1)(a2 -4+5)

= a(a2+1)(a2 -4)+ 5a( a2 -1)

= (a -2) (a-1)a(a+1)(a+2) + 5a(a2 -1)

Số hạng thứ nhất là tích của năm số nguyên liên tiếp nên chia hết cho 5,số hạng thứ hai cũng chia hết cho 5.

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

10 tháng 11 2017

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

10 tháng 11 2017

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

8 tháng 10 2017

bài này làm thế nào 

hiền k hộ ta