K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

1:

A = \(\dfrac{2}{x^2-1}-\dfrac{1}{x^2+x}+\dfrac{x^2-3}{x^3-x}\)

= \(\dfrac{2}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x\left(x+1\right)}+\dfrac{x^2-3}{x\left(x^2-1\right)}\)

= \(\dfrac{2x}{x\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{x\left(x-1\right)\left(x+1\right)}+\dfrac{x^2-3}{x\left(x-1\right)\left(x+1\right)}\)

= \(\dfrac{2x-x+1+x^2-3}{x\left(x-1\right)\left(x+1\right)}\)

= \(\dfrac{x^2+x-2}{x\left(x-1\right)\left(x+1\right)}\)

NV
26 tháng 12 2022

1,

\(A=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{4x^2+x-2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2-4}{\left(x-2\right)\left(x+2\right)}\)

\(x=4\Rightarrow A=\dfrac{4.x^2-4}{\left(4-2\right)\left(4+2\right)}=...\)

2.

\(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3-5x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)+3-5x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)

3.

Đề lỗi, thiếu dấu trước \(\dfrac{6+5x}{4-x^2}\)

NV
26 tháng 12 2022

4.

\(A=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4x-20}{\left(x-5\right)\left(x+5\right)}\)

\(=\dfrac{-4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{-4}{x-5}\)

\(x=\dfrac{4}{5}\Rightarrow A=\dfrac{-4}{\dfrac{4}{5}-5}=\dfrac{20}{21}\)

5.

\(M=\dfrac{x^2}{x\left(x+2\right)}+\dfrac{2x}{x\left(x+2\right)}+\dfrac{2\left(x+2\right)}{x\left(x+2\right)}\)

\(=\dfrac{x^2+2x+2\left(x+2\right)}{x\left(x+2\right)}=\dfrac{x^2+4x+4}{x\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)^2}{x\left(x+2\right)}=\dfrac{x+2}{x}\)

\(x=-\dfrac{3}{2}\Rightarrow M=\dfrac{-\dfrac{3}{2}+2}{-\dfrac{3}{2}}=-\dfrac{1}{3}\)

Bạn ghi lại đề đi bạn. Khó hiểu quá!

18 tháng 12 2022

a)

\(DKXD:\left[{}\begin{matrix}x^2+x\ne0\\x\ne0\\x+1\ne0\end{matrix}\right.< =>\left[{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

b)

\(\left(\dfrac{2x^2-1}{x^2+x}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\right)\cdot\dfrac{x+1}{3}\)

\(=\left(\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{x-1}{x}+\dfrac{3}{x+1}\right)\cdot\dfrac{x+1}{3}\)

\(=\left(\dfrac{2x^2-1}{x\left(x+1\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\dfrac{3x}{x\left(x+1\right)}\right)\cdot\dfrac{x+1}{3}\)

\(=\left(\dfrac{2x^2-1-x^2+1+3x}{x\left(x+1\right)}\right)\cdot\dfrac{x+1}{3}\)

\(=\dfrac{x^2+3x}{x\left(x+1\right)}\cdot\dfrac{x+1}{3}\\ =\dfrac{x\left(x+3\right)\cdot\left(x+1\right)}{x\left(x+1\right)\cdot3}\\ =\dfrac{x+3}{3}\)

 

10 tháng 11 2021

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

10 tháng 11 2021

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

Câu 1:

Sửa đề: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

Ta có: \(B=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right):\left(\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=1\)

Câu 3: 

Ta có: \(Q=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)

\(=\left(\dfrac{a}{\sqrt{a}\left(\sqrt{a}-2\right)}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-2\right)^2}\)

\(=\dfrac{a+\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\cdot\dfrac{\sqrt{a}-2}{1}\)

\(=\sqrt{a}\left(\sqrt{a}-2\right)\)

\(=a-2\sqrt{a}\)

7 tháng 6 2023

` @ \color{Red}{m}`

` \color{lightblue}{Answer}`  

\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\\ =\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x}{x+1}\)

__

\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\\ =\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\\ =\dfrac{3x}{2x\left(x+3\right)}-\dfrac{2x-6}{2x\left(x+3\right)}\\ =\dfrac{3x-\left(2x-6\right)}{2x\left(x+3\right)}\\ =\dfrac{3x-2x+6}{2x\left(x+3\right)}\\ =\dfrac{x+6}{2x\left(x+3\right)}\)

__

\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\\ =\dfrac{1}{1-x}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{1-x}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}-\dfrac{2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1+x-2x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}\\ =\dfrac{1}{1+x}\)

7 tháng 6 2023

\(\dfrac{x^2}{x^2-1}+\dfrac{x}{\left(1-x\right)\left(x+1\right)}\left(dkxd:x\ne\pm1\right)\)

\(=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2-x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x}{x+1}\)

========================

\(\dfrac{3}{2x+6}-\dfrac{x-3}{x^2+3x}\left(dkxd:x\ne\pm3;x\ne0\right)\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-3}{x\left(x+3\right)}\)

\(=\dfrac{3x-2\left(x-3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{3x-2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{x+6}{2x^2+6x}\)

==========================

\(\dfrac{1}{1-x}+\dfrac{2x}{x^2-1}\left(dkxd:x\ne\pm1\right)\)

\(=-\dfrac{1}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-\left(x+1\right)+2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x-1+2x}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x+1}\)

19 tháng 10 2021

a: Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

22 tháng 11 2021

ĐKXĐ: \(x\ne-3,x\ne-2,x\ne1\)

\(A=\dfrac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\dfrac{x-1-x}{x-1}\)

\(=\dfrac{-\left(x+3\right)}{\left(x+3\right)\left(x+2\right)}.\left(1-x\right)=\dfrac{x-1}{x+2}\)

\(A=0\Leftrightarrow\dfrac{x-1}{x+2}=0\Leftrightarrow x=1\left(ktm\right)\Leftrightarrow S=\varnothing\)