K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

⇌ 2x(x+1)(y+1)+xy= -2y(y+1)(x+1)-xy

⇌ 2x(x+1)(y+1)+ 2y(y+1)(x+1)+xy+xy=0

⇌ (x+1)(y+1)(2x+2y)+2xy=0

⇌ 2(x+1)(y+1)(x+y)+2xy=0

⇌ 2((x+1)(y+1)(x+y)+xy)=0

⇌ x2y+x2+xy+x+xy2+xy+y2+y+xy=0

mk đc đến đó thui

thông cảm nha

18 tháng 5 2018

mk dùng cách đặt ẩn phụ: x+y=a; xy=b => (a+b)(a+1)=0 mà chưa ra đc gì nữa. nản

14 tháng 3 2021

Hệ pt \(\Leftrightarrow\left\{{}\begin{matrix}2x\left(x+1\right)\left(y+1\right)+xy=-6\left(1\right)\\2y\left(y+1\right)\left(x+1\right)\text{yx}=6\left(2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x\left(x+1\right)\left(y+1\right)=-6-xy\\2y\left(y+1\right)\left(x+1\right)=6-xy\end{matrix}\right.\)

Thay x=0, y=0 thì hệ ko thỏa mãn. Thay x=-1, y=-1 hệ cũng k thỏa

\(\Rightarrow\left(x;y\right)\ne\left(0;0\right),xy\ne0,x+1\ne0,y+1\ne0\Rightarrow6-xy\ne0\) (*)

Chí từng vế của 1 pt cho nhau: 

\(\Rightarrow\dfrac{x}{y}=\dfrac{-6-xy}{6-xy}\Leftrightarrow xy\left(x-y\right)=6\left(x+y\right)\)

Thay x=y thì hpt có vế phải = nhau, vế trái khác nhau => x-y\(\ne0\) (**)

\(\Rightarrow xy=\dfrac{6\left(x+y\right)}{x-y}\left(3\right)\)

Cộng từng vế (1) và (2) của hệ ta đc pt: \(2\left(x+y\right)\left(x+1\right)\left(y+1\right)+2xy=0\left(4\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x+y+xy+1\right)+xy=0\)  

\(\Leftrightarrow\left(x+y\right)\left(x+y+1+\dfrac{6\left(x+y\right)}{x-y}+\dfrac{6\left(x+y\right)}{x-y}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+y+1+\dfrac{6\left(x+y+1\right)}{x-y}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+y+1\right)\left(1+\dfrac{6}{x-y}\right)=0\Leftrightarrow\left[{}\begin{matrix}x+y=0\\x+y+1=0\\1+\dfrac{6}{x-y}=0\end{matrix}\right.\)

- Với \(x+y=0\Leftrightarrow x=-y\)

Thế vào hệ \(\Rightarrow-2y^2=0\Leftrightarrow y=0,x=O\) (ko thỏa *)

- Với \(x+y+1=0\Leftrightarrow x=-y-1\). Thế vào pt (1) của hệ ta đc:

\(2y^3+3y^2+y+6=0\Leftrightarrow\left(y+2\right)\left(2y^2-y+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\Leftrightarrow y=-2\\2y^2-y+3=0\left(VN\right)\end{matrix}\right.\)

- Với y=-2 => x=1. Thế vào thì hệ thỏa, vậy có nghiệm(x;y)=(1;-2)

- Với \(1+\dfrac{6}{x-y}=0\Leftrightarrow x-y+6=0\Leftrightarrow x=y-6\)

Thế x=y-6 vào pt (2) của hệ:

\(\left(2\right)\Leftrightarrow2y^3-7y^2-16y-6=0\Leftrightarrow\left(2y+1\right)\left(y^2-4y-6\right)=0\Leftrightarrow\left[{}\begin{matrix}2y+1=0\\y^2-4y-6=0\end{matrix}\right.\)

\(y^2-4y-6=0\Leftrightarrow\left[{}\begin{matrix}y_1=2+\sqrt{10}\\y_2=2-\sqrt{10}\end{matrix}\right.\)

\(2y+1=0\Leftrightarrow y_3=-\dfrac{1}{2}\)

..................

NV
12 tháng 8 2020

Cộng vế với vế:

\(\left(x+y\right)\left(x+1\right)\left(y+1\right)+xy=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+y+xy+1\right)+xy=0\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) với \(a^2\ge4b\)

\(\Rightarrow a\left(a+b+1\right)+b=0\)

\(\Leftrightarrow a\left(a+b\right)+a+b=0\)

\(\Leftrightarrow\left(a+1\right)\left(a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=-1\\a+b=0\end{matrix}\right.\)

Th1: \(a=-1\Rightarrow y=-x-1\Rightarrow y+1=-x\)

Thay vào pt đầu:

\(2x\left(x+1\right).\left(-x\right)+x\left(-x-1\right)=-6\)

Bạn tự bấm máy

TH2: \(a+b=0\Rightarrow x+y+xy=0\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=1\)

Thay vào pt đầu: \(\left\{{}\begin{matrix}x+y+xy=0\\2x+xy=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y+xy=0\\x-y=-6\end{matrix}\right.\)

\(\Rightarrow y-6+y+y\left(y-6\right)=0\)

NV
8 tháng 4 2021

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)

\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)

4 tháng 10 2019

b) Lấy pt đầu trừ pt dưới thu được:

\(x^3-y^3+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\)

Do \(x^2+xy+y^2=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+2>0\)

Do đó x = y. Thay vào pt đầu thu được:

\(x^3-2x-1=0\Leftrightarrow\left(x+1\right)\left(x^2-x-1\right)=0\)

c) Lấy pt trên trừ pt dưới:

\(2\left(x^2-y^2\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+2y-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\2x+2y-3=0\end{matrix}\right.\)

Auto làm nốt:D

P/s: Is that true?

NV
30 tháng 5 2020

b/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4-y^2\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=4\\2x^3=\left(x+y\right)\left(4-xy\right)\end{matrix}\right.\)

\(\Rightarrow2x^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(\Leftrightarrow2x^3=x^3+y^3\)

\(\Leftrightarrow x^3=y^3\Rightarrow x=y\)

Thay vào pt đầu:

\(2x^2=4\Rightarrow x^2=2\Rightarrow x=y=\pm\sqrt{2}\)

NV
30 tháng 5 2020

a/

\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(2x+y\right)+x\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+x\right)\left(2x+y\right)=-6\\x^2+x+2x+y=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=a\\2x+y=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab=-6\\a+b=1\end{matrix}\right.\) với

Theo Viet đảo, a và b là nghiệm của:

\(t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=3\\2x+y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=-2\left(vn\right)\\2x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-3=0\\y=-2x-2\end{matrix}\right.\) (bấm casio)

13 tháng 7 2019

Giải giúp mik câu c thôi cx đc!

Help me !!! gianroi

NV
2 tháng 10 2019

a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)

\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:

\(t^2-t+2=0\) (vô nghiệm)

TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)

b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)

Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)

NV
2 tháng 10 2019

c/ Trừ vế với vế:

\(x^2-y^2-2x+2y=y-x\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)

Thay vào pt đầu:

\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)

d/ Sao có t từ đâu vào đây thế này? :(

e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)

\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)

Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)