K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

a)

Gọi pt đường thẳng $BC$ là $y=ax+b$

Ta có: \(\left\{\begin{matrix} -4=a+b\\ -2=3a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=1\\ b=-5\end{matrix}\right.\)

Vậy pt tổng quát của đường thẳng $BC$ là:

\(y=x-5\Leftrightarrow x-y-5=0\)

b)

Đường thẳng $d:3x+y-5=0$ có vecto pháp tuyến là $(3,1)$ thì vecto chỉ phương là $(-1,3)$

Vì $\Delta$ song song với $(d)$ nên vecto chỉ phương của $\Delta$ cũng là $(-1,3)$

Mà $\Delta$ chứa $A$ nên phương trình tham số của $\Delta$ là:

\(\left\{\begin{matrix} x=-2-t\\ y=3+3t\end{matrix}\right.\)

15 tháng 8 2018

17 tháng 1 2017

Chọn C.

Phương pháp:

Viết phương trình đường thẳng dưới dạng phương trình đoạn chắn.

Cách giải:

6 tháng 2 2019

Đường thẳng OA có dạng y = ax

Vì \(A\in OA\Rightarrow2=a\)

\(\Rightarrow OA:y=2x\)

Để O;A;M thẳng hàng thì \(M\in OA\)

\(\Leftrightarrow m^2=2m\)

\(\Leftrightarrow m^2-2m=0\)

\(\Leftrightarrow m\left(m-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=2\end{cases}}\)

6 tháng 2 2020

(2;2)

27 tháng 10 2017

Ta có:
vt AB(Xb-Xa;Yb-Ya)=(-3-2;-1-4)=(-5;-5)
vt BC(Xc-Xb;Yc-Yb)=(-2+3;1+1)=(1;2)
vt CA(Xa-Xc;Ya-Yc)=(2+2;4-1)=(4;3)
vt AC(Xc-Xa;Yc-Ya)=(-2-2;1-4)=(-4;-3)
=>-5/-5 khác -4/-3 =>3 điểm A,B,C không thẳng hàng

10 tháng 12 2017

6 tháng 4 2016

Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)

Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)

\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))

\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)

\(\Leftrightarrow x=1;x=5\)

Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)

NV
23 tháng 12 2020

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)

3 điểm M;A;B thẳng hàng khi:

\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)

\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)