Cho 3 số dương a,b,c thõa mãn \(ab+bc+ca=3abc.\) Tìm GTLN của biểu thức :
\(F=\dfrac{1}{a+2b+3c}+\dfrac{1}{2a+3b+c}+\dfrac{1}{3a+b+2c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab+bc+ca=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (do a,b,c là các số dương)
Áp dụng BĐT Bunhiacopxki dạng phân thức:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{6^2}{a+2b+3c}\)
\(\Rightarrow\dfrac{36}{a+2b+3c}\le\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\left(1\right)\)
Tương tự: \(\left\{{}\begin{matrix}\dfrac{36}{b+2c+3a}\le\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{3}{a}\left(2\right)\\\dfrac{36}{c+2a+3b}\le\dfrac{1}{c}+\dfrac{2}{a}+\dfrac{3}{b}\left(3\right)\end{matrix}\right.\)
Lấy (1) + (2) + (3) ta được:
\(36F\le6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=6.3=18\)
\(\Rightarrow F\le\dfrac{1}{2}\)
MaxF=1/2 khi \(a=b=c=1\)
Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)
Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 2
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{b+c}\ge\dfrac{16}{2a+3b+3c}\)
\(\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+c}\ge\dfrac{16}{2b+3a+3c}\)
\(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{a+b}+\dfrac{1}{a+b}\ge\dfrac{16}{2c+3a+3b}\)
cộng tất cả lại ta được \(4.2017\ge16.\left(\dfrac{1}{2a+3b+3c}+\dfrac{1}{2b+3a+3c}+\dfrac{1}{2c+3a+3b}\right)< =>P\le\dfrac{2017}{4}\)
dấu bằng xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{a+b}=\dfrac{1}{b+c}=\dfrac{1}{a+c}\\\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\end{matrix}\right.< =>\left\{{}\begin{matrix}a=b=c\\\dfrac{3}{2a}=\dfrac{3}{2b}=\dfrac{3}{2c}=2017\end{matrix}\right.< =>a=b=c=\dfrac{3}{4034}}\)
Bổ đề :\(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)
Áp dụng bất đẳng thức Cô-si ta có:
\(x+y+z\ge3\sqrt[3]{xyz};\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge3\sqrt[3]{\dfrac{1}{x}.\dfrac{1}{y}.\dfrac{1}{z}}\)
\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\dfrac{1}{x}\dfrac{1}{y}\dfrac{1}{z}}=9\)
Dấu "=" xảy ra ⇔ x=y=z
Ta có:\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{9}.\dfrac{9}{a+3b+2c}\le\dfrac{ab}{9}.\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}+\dfrac{1}{2b}\right)\)
Tương tự ta có:\(\dfrac{bc}{b+3c+2a}\le\dfrac{bc}{9}\left(\dfrac{1}{b+a}+\dfrac{1}{c+a}+\dfrac{1}{2c}\right)\)
\(\dfrac{ca}{c+3a+2b}\le\dfrac{ca}{9}.\left(\dfrac{1}{c+b}+\dfrac{1}{a+b}+\dfrac{1}{2a}\right)\)
Cộng vế với vế ta có:
\(A\le\dfrac{1}{9}.\left(\dfrac{ab+bc}{a+c}+\dfrac{cb+ac}{a+b}+\dfrac{ca+ab}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(=\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{9}.\left(6+\dfrac{6}{3}\right)=1\)
Dấu "=" xảy ra ⇔ a=b=c=2
Vậy Max A=1⇔ a=b=c=2
Ta có \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và
\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)
Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)
\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)
\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))
\(T\le\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)
Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)
(Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)
Bạn Lê Song Phương xem lại dùm nhé, thanks!
\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)
\(...\Rightarrow T\le2.3=6\)
\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)
Áp dụng bđt Schwarz ta có:
\(P=\dfrac{a^4}{2ab+3ac}+\dfrac{b^4}{2cb+3ab}+\dfrac{c^4}{2ac+3bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(ab+bc+ca\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{5\left(a^2+b^2+c^2\right)}=\dfrac{1}{5}\).
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{\sqrt{3}}{3}\).
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}=\dfrac{36}{a+2b+3c}\)
\(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}=\dfrac{4}{2a}+\dfrac{9}{3b}+\dfrac{1}{c}\ge\dfrac{\left(2+3+1\right)^2}{2a+3b+c}=\dfrac{36}{2a+3b+c}\)
\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}=\dfrac{9}{3a}+\dfrac{1}{b}+\dfrac{4}{2c}\ge\dfrac{\left(3+1+2\right)^2}{3a+b+2c}=\dfrac{36}{3a+2b+c}\)
Cộng theo vế: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36F\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6F\)
Mặt khác: \(ab+bc+ac=3abc\Leftrightarrow\dfrac{ab+bc+ac}{abc}=3\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
\(\Rightarrow18\ge36F\Leftrightarrow F\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=1\)