a,b,c>0. CM: \(\dfrac{1}{\sqrt{a}}\) + \(\dfrac{3}{\sqrt{b}}\) + \(\dfrac{8}{\sqrt{3c+2a}}\) \(\ge\) \(\dfrac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)
\(A=\dfrac{7\sqrt{a}}{a-9}-\left(\dfrac{\sqrt{a}}{\sqrt{a}-3}-\dfrac{\sqrt{a}-1}{\sqrt{a}+3}\right)=\dfrac{7\sqrt{a}}{a-9}-\dfrac{\sqrt{a}\left(\sqrt{a}+3\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}=\dfrac{7\sqrt{a}}{a-9}-\dfrac{a+3\sqrt{a}-a+3\sqrt{a}+\sqrt{a}-3}{a-9}=\dfrac{3}{a-9}\)\(B=\left(\dfrac{1}{\sqrt{a}-3}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}\right)=\dfrac{\sqrt{a}-\sqrt{a}+3}{\sqrt{a}\left(\sqrt{a}-3\right)}:\dfrac{a-9-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{3}{\sqrt{a}\left(\sqrt{a}-3\right)}.\dfrac{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}{-5}=\dfrac{3\sqrt{a}-6}{-5\sqrt{a}}\)
\(C=\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\sqrt{a}-a}\right).\left(\dfrac{1}{a}-2\right)=\left(\dfrac{a\sqrt{a}}{\sqrt{a}-1}-\dfrac{a^2}{a\left(\sqrt{a}-1\right)}\right).\dfrac{1-2a}{a}=\dfrac{a\sqrt{a}-a}{\sqrt{a}-1}.\dfrac{1-2a}{a}=\dfrac{a\left(\sqrt{a}-1\right)}{\sqrt{a}-1}.\dfrac{1-2a}{a}=1-2a\)\(D=\dfrac{a\sqrt{a}+1}{a-1}-\dfrac{a-1}{\sqrt{a}+1}=\dfrac{a\sqrt{a}+1-\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1}=\dfrac{a\sqrt{a}+1-a\sqrt{a}+a+\sqrt{a}-1}{a-1}=\dfrac{a+\sqrt{a}}{a-1}=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}}{\sqrt{a}-1}\)
b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}\)
\(=\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)-\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)-2b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\dfrac{a+\sqrt{ab}-\sqrt{ab}+b-\sqrt{ab}+b-2b}{a-b}\)
\(=\dfrac{a}{a-b}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
a) Ta có: \(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2+1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2+1\right]\left[\left(\sqrt{2}\right)^2-1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^4-1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^8-1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^{16}-1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)
\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^{32}-1\right]\)
\(=65535\sqrt{2}+65535\)
b) Ta có: \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2020}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2020}-\sqrt{2019}\)
\(=\sqrt{2020}-1\)
\(=2\sqrt{505}-1\)
c) Ta có: \(C^3=26+15\sqrt{3}+26-15\sqrt{3}+3\cdot\sqrt[3]{\left(26+15\sqrt{3}\right)\left(26-15\sqrt{3}\right)}\cdot\left(\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\right)\)
\(\Leftrightarrow C^3=52+3\cdot C\)
\(\Leftrightarrow C^3-3\cdot C-52=0\)
\(\Leftrightarrow C^3-4C^2+4C^2-16C+13C-52=0\)
\(\Leftrightarrow C^2\left(C-4\right)+4C\left(C-4\right)+13\left(C-4\right)=0\)
\(\Leftrightarrow\left(C-4\right)\left(C^2+4C+13\right)=0\)
mà \(C^2+4C+13>0\)
nên C-4=0
hay C=4
a)\(\dfrac{3}{4}-\dfrac{5}{2}-\dfrac{3}{5}=\dfrac{15}{20}-\dfrac{50}{20}-\dfrac{12}{20}=-\dfrac{47}{20}\)
b) \(\sqrt{7^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}=7+\sqrt{\dfrac{1}{16}}=7+\dfrac{1}{4}=\dfrac{29}{4}\)
c) \(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}=\dfrac{1}{2}.10-\sqrt{\dfrac{1}{16}+1}=5-\sqrt{\dfrac{17}{16}}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT=\dfrac{1}{\sqrt{a}}+\dfrac{3}{\sqrt{b}}+\dfrac{8}{\sqrt{3c+2a}}\)
\(=\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{2}{\sqrt{b}}+\dfrac{8}{\sqrt{3c+2a}}\)
\(\ge\dfrac{4}{\sqrt{a}+\sqrt{b}}+\dfrac{2\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(=\dfrac{4}{\sqrt{a}+\sqrt{b}}+\dfrac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}+\dfrac{\left(1+2\right)^2}{\sqrt{3c+2a}+\sqrt{b}}\)
\(\ge\dfrac{\left(1+2+1+2+2\right)^2}{2\sqrt{3c+2a}+3\sqrt{b}+\sqrt{a}}\)
\(\ge\dfrac{64}{\sqrt{\left(1+2^2+3\right)\left(a+2a+3c+3b\right)}}\)
\(=\dfrac{64}{\sqrt{24\left(a+c+b\right)}}=\dfrac{16\sqrt{2}}{\sqrt{3\left(a+b+c\right)}}=VP\)
sao lại bạn lại nghĩ ra cách tách như vậy?