Cho tổng S = 3 + 32 + 33 +...+ 32007. So sánh 2S + 3 với 82502
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)
= 2²⁰²⁴ - 1
b) B = 2²⁰²⁴
B - 1 = 2²⁰²⁴ - 1 = S
B = S + 1
Vậy B > S
a,
\(S=1+2+2^2+...+2^{2023}\)
\(2S=2+2^2+2^3+...+2^{2024}\)
\(\Rightarrow S=2^{2024}-1\)
b.
Do \(2^{2024}-1< 2^{2024}\)
\(\Rightarrow S< B\)
2.
\(H=3+3^2+...+3^{2022}\)
\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)
\(\Rightarrow3H-H=3^{2023}-3\)
\(\Rightarrow2H=3^{2023}-3\)
\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)
Ta có:
\(S=3+3^2+3^3+...+3^{2007}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{2005}+3^{2006}+3^{2007}\right)\)
\(=1.\left(3+3^2+3^3\right)+...+3^{2004}.\left(3+3^2+3^3\right)\)
\(=\left(1+...+3^{2004}\right).\left(3+3^2+3^3\right)\)
\(=\left(1+...+3^{2004}\right).39=\left(1+...+3^{2004}\right).3.13\) chia hết chp 13
a) S= 3+3^2+....+3^2007
= ( 3 + 3^2 +3^3)+....+(3^2005+3^2006+2^2007)
= 3(1+3+9)+......+3^2005(1+3+9)
= 3. 13 +......+2^2005.13
=13(3+...+2^2005) chia hết cho 13
=> ĐPCM
b) S= 3+3^2+....+3^2007
= 3 + (3^2+3^3+3^4+3^5)+.....+(3^2004+3^2005+3^2006+3^2007)
= 3 + 3^2( 1+3+9+27)+.....+3^2004(1+3+9+27)
= 3+ 3^2.40 +....+3^2004.40
= 3+ 40(3^2+...+3^2004) chia cho 40 dư 3
MÌnh nghĩ câu c, k đến nỗi nào , cô lên , 2S + 3 thì cứ làm theo vd sau
A= 2+2^2+...+2^11
2A = 2^2+...+2^12
rồi làm hơ ,
Ta có:
\(1+3+3^2+3^3+...+3^{99}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+3^3+...+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)
\(\Rightarrow2S+1\) là lũy thừa của 3