K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AFBD có 

\(\widehat{ADB}=\widehat{DBF}=\widehat{FAD}=90^0\)

Do đó: AFBD là hình chữ nhật

a: Xét tứ giác ADBF có 

\(\widehat{ADB}=\widehat{FAD}=\widehat{FBD}=90^0\)

Do đó: ADBF là hình chữ nhật

12 tháng 9 2021

 làm sao để c/m đc FAD và FBD vuông vậy ạ  ?

a: Xét tứ giác AFBD có 

\(\widehat{FAD}=\widehat{FBD}=\widehat{ADB}=90^0\)

Do đó: AFBD là hình chữ nhật

12 tháng 9 2021

Đề câu b lag wa??

16 tháng 12 2023

a: ta có: BH\(\perp\)AC

CK\(\perp\)AC

Do đó: BH//CK

Ta có: CH\(\perp\)AB

BK\(\perp\)BA

Do đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: Ta có: BHCKlà hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

14 tháng 12 2023

a, Ta có:

- BH là đường cao của tam giác ABC, nên BH vuông góc với AC.

- CK là đường cao của tam giác ABC, nên CK vuông góc với AB.

- Vì BH và CK đều vuông góc với hai cạnh AB và AC của tam giác ABC, nên BHCK là hình bình hành.

 

b, Gọi M là trung điểm của BC. Ta cần chứng minh CM, HM và KM thẳng hàng.

- Vì M là trung điểm của BC, nên BM = MC.

- Ta có BHCK là hình bình hành, nên BH = CK.

- Vì BH và CK là đường cao của tam giác ABC, nên BH = 2HM và CK = 2KM.

- Từ đó, ta có BM = MC = HM = KM.

- Vì BM = MC và HM = KM, nên CM, HM và KM thẳng hàng.

 

Vậy, ta đã chứng minh được CM, HM và KM thẳng hàng.

a: Xét tứ giác AFBD có 

\(\widehat{FAD}=\widehat{FBD}=\widehat{ADB}=90^0\)

Do đó: AFBD là hình chữ nhật