Cho đường tròn ( O ;R ). Từ điểm M ngoài đường tròn , kể 2 tiếp tuyến MA , MB ( A , B là 2 tiếp điểm ) . Lấy điểm C bất kì trên cung nhỏ AB ( C khác A,B ) . Gọi D , E , F lần lượt là hình chiếu vuông góc của C trên AB , AM , BM .
a/ CM tứ giác AECD nội tiếp đường tròn .
b/ CMR góc CDE = góc CBA .
c/ Gọi I là giao điểm của AC và ED , K là giao điểm của CD và DF . Chứng minh : IK // AB .
câu a bạn tự làm nha b)xét đường tròn ngoại tiếp tứ giác ADCE góc CDE =góc CAE (2 góc nt cùng chắn cung EC) mà góc CBA = góc CAE ( goc nt và goc tạo bởi tia tiếp tuyến và dây cg cùng chắn cg AC ) suy ra gócCDE = góc CBE c) cm tứ giác BDCF nội tiếp suy ra góc CDF = góc CBF mà góc CAB = góc CBF do đó góc cab = góc cdf cm tt góc CDE = góc CBA TA CÓ : CDE +CDF = CAB+CBA =90 ĐỘ ( VÌ tam giác acb vuông tại c ) xét tứ giác CIDK có ICK +IDK =180 độ mà ICK và IDK là 2 góc đối nhau suy ra tứ giác CIDK nt nên CKI = CDI ( 2goc nt chắn cg IC) mà CDE = CBA nên CKI = CBA DO ĐÓ : IK //AB