Có 2 hộp chứa các viên bi, hộp thứ 1 có 7 viên bi hồng và 5 viên bi đỏ, hộp thứ 2 có 6 viên bi hồng và 4 viên bi đỏ. Chọn ngẫu nhiên mỗi hộp 2 viên. tính xác suất để các quả cầu được chọn khác màu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu là chọn ngẫu nhiên mỗi hộp 2 viên bi.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 4 viên bi được chọn luôn có bi đỏ nhưng không có bi xanh . Ta liệt kê các trường hợp thuận lợi của không gian biến cố A như sau:
● Trường hợp 1. Chọn hộp thứ nhất 2 viên bi đỏ, có cách.
Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có cách.
Do đó trường hợp này có cách.
● Trường hợp 2. Chọn hộp thứ nhất 1 viên bi đỏ và 1 viên bi vàng, có cách.
Chọn hộp thứ hai 2 viên bi từ 8 viên bi (2 đỏ và 6 vàng), có cách.
Do đó trường hợp này có cách.
● Trường hợp 3. Chọn hộp thứ nhất 2 viên bi vàng, có cách.
Chọn hộp thứ hai 2 viên bi đỏ hoặc 1 viên bi đỏ và 1 viên bi vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố A là
Vậy xác suất cần tính
Chọn B.
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
Hộp 1 có 9 viên, hộp 2 có 9 viên, lấy ở mỗi hộp 1 viên.
\(\Rightarrow n(Ω)=(C_{9}^{1})^2=81\)
A: "Hai viên bi chọn được cùng màu".
TH1: cùng màu vàng: \(C_{6}^{1} .C_{5}^{1} =30\)
TH2: cùng màu đỏ: \(C_{3}^{1} .C_{4}^{1}=12\)
\(\Rightarrow n(A)=30+12=42\)
\(\Rightarrow P(A) =\dfrac{n(A)}{n(Ω)}=\dfrac{42}{81}=\dfrac{14}{27}\).
Đáp án A
Không gian mẫu là số cách chọn ngẫu nhiên 5 viên bi từ hộp chứa 18 viên bi.Suy ra số phần tử của không gian mẫu là Ω = C 18 5 = 8568 .
Gọi A là biến cố 5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng . Ta có các trường hợp thuận lợi cho biến cố A là:
● TH1: Chọn 1 bi đỏ, 1 bi vàng và 3 bi xanh nên có C 6 1 . C 7 1 . C 5 3 cách.
● TH2: Chọn 2 bi đỏ, 2 bi vàng và 1 bi xanh nên có C 6 2 . C 7 2 . C 5 1 cách.
Suy ra số phần tử của biến cố A là
Không gian mẫu là số cách chọn ngẫu nhiên 5 viên bi từ hộp chứa 18 viên bi.Suy ra số phần tử của không gian mẫu là Ω = C 18 5 = 8568
Gọi A là biến cố "5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng". Ta có các trường hợp thuận lợi cho biến cố A là:
Chọn A
Chọn B
Lời giải. Không gian mẫu là số cách chọn ngẫu nhiên 5 viên bi từ hộp chứa 18 viên bi.
Suy ra số phần tử của không gian mẫu là Ω = C 18 5 = 8568 .
Gọi A là biến cố "5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng"".
Ta có các trường hợp thuận lợi cho biến cố A là:
● TH1:
Chọn 1 bi đỏ, 1 bi vàng và 3 bi xanh nên có C 6 1 . C 7 1 . C 5 3 cách.
● TH2:
Chọn 2 bi đỏ, 2 bi vàng và 1 bi xanh nên có C 6 2 . C 7 2 . C 5 1 cách.
Suy ra số phần tử của biến cố A là Ω A = 1995 .
Vậy xác suất cần tính
Đáp án B
Có các cách chọn sau:
+) 1 bi đỏ, 1 bi vàng, 3 bi xanh, suy ra có C 6 1 C 7 1 C 5 3 = 420 cách.
+) 2 bi đỏ, 2 bi vàng, 1 bi xanh, suy ra có C 6 2 C 7 2 C 5 1 = 1575 cách.
Suy ra xác suất bằng 420 + 1575 C 18 5 = 95 408 .
Gọi A là biến cố "Chọn được 2 viên bi khác màu trong hộp thứ nhất".
Gọi B là biến cố "Chọn được 2 viên bi khác màu trong hộp thứ hai".
Số kết quả thuận lợi cho biến cố A là \(n\left(A\right)=7.5=35\).
Số phần tử không gian mẫu của A là \(n\left(\Omega_A\right)=C^2_{12}\).
\(\Rightarrow\) Xác suất xảy ra biến cố A là \(P\left(A\right)=\dfrac{35}{C^2_{12}}=\dfrac{35}{66}\).
Số kết quả thuận lợi cho biến cố B là \(n\left(B\right)=6.4=24\).
Số phần tử không gian mẫu của B là \(n\left(\Omega_B\right)=C^2_{10}\).
\(\Rightarrow\) Xác suất xảy ra biến cố B là \(P\left(B\right)=\dfrac{24}{C^2_{10}}=\dfrac{8}{15}\).
Vậy xác suất chọn được hai viên bi khác màu là \(P\left(A\right).P\left(B\right)=\dfrac{35}{66}.\dfrac{8}{15}=\dfrac{28}{99}\).