Tìm ảnh của đường thẳng d:3x-5y+8=0 qua phép tịnh tiến theo u=(-2,3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M′(x′;y′) ∈ d′ là ảnh của M(x,y) ∈ d qua phép tịnh tiến theo vecto v → ( 2 ; 3 )
Do M(x,y) ∈ d nên
3x − 5y + 3 = 0
⇒ 3(x′−2) − 5(y′−3) + 3 = 0
⇔ 3x′ − 5y′ + 12 = 0 (d′)
Vậy M′(x′;y′) ∈ d′: 3x′ − 5y′ + 12 = 0
Lấy M ( -1;1 ) ∈ ∆ . Suy ra ảnh của M qua T n là M' ( -3;5 ).
Gọi ∆ ' là ảnh của ∆ qua T n
Đường thẳng ∆ ' qua M' ( -3;5 ) nhận n → = 3 ; - 2 làm vecto pháp tuyến nên có phương trình 3 x + 3 - 2 y - 5 ⇔ 3 x - 2 y + 19 = 0
Đáp án B
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
Do d' là ảnh của d qua phép tịnh tiến \(\Rightarrow\) d' cùng phương d
Phương trình d' có dạng: \(2x-y+c=0\)
Lấy \(A\left(0;-1\right)\) là 1 điểm thuộc d
\(T_{\overrightarrow{v}}\left(A\right)=A'\Rightarrow\left\{{}\begin{matrix}x'=0+2=2\\y'=-1+\left(-1\right)=-2\end{matrix}\right.\)
\(\Rightarrow A'\left(2;-2\right)\)
Thế vào pt d':
\(2.2-\left(-2\right)+c=0\Rightarrow c=-6\)
Vậy pt d' là: \(2x-y-6=0\)
Đáp án B
Độ dài véc tơ v → bé nhất đúng bằng khoảng cách h giữa d và d' . h chính là khoảng cách từ M ∈ d tới N ∈ d ' sao cho M N → ⊥ u → 4 ; − 3 trong đó u → là VTCP của cả d và d' .Và khi đó: v → = M N →
Chọn M − 3 ; 2 ∈ d . Ta cần tìm N t ; − 6 − 3 t 4 ∈ d ' sao cho:
M N → t + 3 ; − 14 − 3 t 4 ⊥ u → 4 ; − 3
⇔ 4 t + 12 + 42 + 9 t 4 = 0 ⇔ t = − 18 5
⇒ M N → = − 3 5 ; − 4 5
- Ảnh của đường thẳng d là đường thẳng d' song song với d nên có dạng 3x-5y+c=0
- chọn điểm A (-1;1) thuộc d. Tịnh tiến A theo vecto u được A'(-3;4)
- thay tọa độ A' vào ptđt d' được c = 29
=> 3x-5y+29=0
Gọi \(M\left(x;y\right)\) là điểm bất kì thuôc d \(\Rightarrow3x-5y+8=0\) (1)
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow M'\in d'\) (với d' là ảnh của d qua phép tịnh tiến \(\overrightarrow{u}\))
Theo công thức tọa độ phép tịnh tiến:
\(\left\{{}\begin{matrix}x'=x-2\\y'=y+3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'+2\\y=y'-3\end{matrix}\right.\)
Thế vào (1):
\(3\left(x'+2\right)-5\left(y'-3\right)+8=0\)
\(\Leftrightarrow3x'-5y'+29=0\)
Hay pt d' có dạng: \(3x-5y+29=0\)