Cho ΔABC vuông tại A, có AB = AC. Gọi H là trung điểm của cạnh BC. a) Chứng minh rằng: ΔAHB=ΔAHC. b) Chứng minh rằng: AH⊥BC. c) Tính số đo ∠B và ∠C của ΔABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB và ΔAHC có
AH chung
AB=AC
HB=HC
Do đó: ΔAHB=ΔAHC
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
b: Xét ΔKCB vuông tại K và ΔHBC vuông tại H có
BC chung
KB=HC
Do đó: ΔKCB=ΔHBC
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔBIC cân tại I
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
c: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
d: Xét ΔABC có AK/AB=AH/AC
nên KH//BC
a: Xét ΔAHB vuông tại H và ΔADH vuông tại D có
góc HAB chung
Do đó: ΔAHB\(\sim\)ΔADH
Xét ΔAHC vuông tại H và ΔAEH vuông tại E có
góc HAC chung
Do đó: ΔAHC\(\sim\)ΔAEH
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
ABDC E
a) Vì AD phân giác BACˆBAC^ (gt)
=> ABAC=BDDCABAC=BDDC (t/c đường p/g ΔΔ )
=> ABAC+AB=BDBD+DCABAC+AB=BDBD+DC (t/c TLT)
=> 1212+20=BDBC1212+20=BDBC
=> 1232=BD281232=BD28
=> BD=12⋅2832=10,5BD=12⋅2832=10,5 cm
Ta có: BD+DC=BCBD+DC=BC (D ∈∈ BC)
=> DC=28−10,5=17,5DC=28−10,5=17,5 cm
Xét ΔΔ ABC có: DE // AB (gt)
=> DEAB=DCBCDEAB=DCBC (hệ qủa ĐL Ta-lét)
=> DE=AB⋅DCBC=12⋅17,528=7,5DE=AB⋅DCBC=12⋅17,528=7,5 cm
a)vì AB=AC;^A=90 độ=> tam giác ABC vuông cân tại A
=> ^B=^C
Xét tam giác AHB và AHC có
AB=AC
^B=^C
HB=HC
=> 2 tam giác = nhau(c.g.c)
b)vì tam giác AHB=AHC =>^AHB=^AHC=90 độ
=>AH⊥BC
c)vì tam giác ABC vuông cân tại A
=>^B+^C=90 độ và ^B=^C
=>^B=^C=45 độ