K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

\(\left(x^2-2x+3\right)\left(\frac{1}{2x}-5\right)\)

\(=\frac{x^2}{2x}-5x^2-\frac{2x}{2x}+10x+\frac{3}{2x}-15\)

\(=\frac{x^2}{2x}-5x^2-16+10x+\frac{3}{2x}\)

\(=-5x^2+\frac{x^2}{2x}+\frac{20x^2}{2x}+\frac{3}{2x}-16\)

\(=-5x^2+\frac{x^2+20x+3}{2x}-16\)

học tốt

13 tháng 9 2021

(x^2-2x+3)(1/2x-5)=1/2x^3-5x^2-x^2+10x+3/2x-15=1/2x^3-6x^2+11,5x-15

14 tháng 10 2018

Chọn A.

Ta có:

+ sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x.cos2x = 1 - 2sin2x.cos2x.

+ sin4x + cos4x = 1 - 3sin2x.cos2x.

Do đó

A = 3(1 - 2sin2x.cos2x) - 2(1 - 3sin2x.cos2x) = 1.

\(A=3\left[\left(sin^2x+cos^2x\right)^2-2\cdot sin^2x\cdot cos^2x\right]-2\left[\left(sin^2x+cos^2x\right)^3-3\cdot sin^2x\cdot cos^2x\left(sin^2x+cos^2x\right)\right]\)
 

\(=3\left[1-2\cdot sin^2x\cdot cos^2x\right]-2\left[1-3\cdot sin^2x\cdot cos^2x\right]\)

\(=3-6\cdot sin^2x\cdot cos^2x-2+6\cdot sin^2x\cdot cos^2x\)

=1

NV
23 tháng 4 2021

\(P=\dfrac{-2sin5x.sinx-sinx}{2sin5x.cosx+cosx}=\dfrac{-sinx\left(2sin5x+1\right)}{cosx\left(2sin5x+1\right)}=-tanx\)

14 tháng 6 2020

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

27 tháng 12 2017

Chọn A

y = cos6 x+ sin2xcos2x(sin2x + cos2x) + sin4x - sin2x

= cos6x + sin2x(1 - sin2x) + sin4x - sin2x = cos6x

Do đó : y' = -6cos5xsinx.

24 tháng 7 2018

30 tháng 8 2019

Chứng minh các biểu thức đã cho không phụ thuộc vào x.

f(x) = 1 ⇒ f′(x) = 0