1)cho tam giác ABC vuông tại A vẽ đường cao AH.
a) Cm:tam giác ABC và tam giác ABH đồng dạng
b)Cm:AB2=BH.BC
c) Kẻ HD vuông góc AB tại D và HE vuông góc AC tại e. Cm tam giác ADE và tam giác ABC đồng dạng
2)Cho tam giác ABC (AB<AC) có 3 góc nhọn, đường cao AH. Kẻ HE,HF lần lượt vuông góc với AB,AC.(E (- AB,F (- AC)
A)CM:tam giác AEH ~ TAM GIÁC AHB
b) CM:AE.AB=AF.AC
C)Đường thẳng EF cắt BC tại M . CM MB.MC=ME.MF
giúp e với ạ mai e thi r
Câu 1:
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đo: ΔABC đồng dạng với ΔHBA
b: Ta có: ΔABC đồng dạg với ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
c: Xét ΔABH vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay AD/AC=AE/AB
Xét ΔADE và ΔACB có
AD/AC=AE/AB
góc DAE chung
DO đó: ΔADE\(\sim\)ΔACB