Cho biết : \(x_0=\sqrt{1006+\sqrt{2011}}-\sqrt{1006-\sqrt{2011}}\)
là nghiệm của phương trình ẩn x : \(x^3+ax^2+bx+14=0\) (với a,b thuộc Q)
Tìm a,b và các nghiệm còn lại của phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)
Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:
\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)
Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ
\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ
Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)
Vậy a = 1; b = -8
Câu 1. Đặt \(x=\sqrt[3]{a},y=\sqrt[3]{b}\to x^3+y^3=2\to2=\left(x+y\right)\left(x^2-xy+y^2\right).\)
Vì \(x^2-xy+y^2=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}>0\) nên suy ra \(x+y>0.\)
Mặt khác ta có \(x^2-xy+y^2=\frac{1}{4}\left(4x^2-4xy+4y^2\right)=\frac{1}{4}\left(x^2+2xy+y^2\right)+\frac{3}{4}\left(x^2-2xy+y^2\right)\)
\(=\frac{\left(x+y\right)^2}{4}+\frac{3\left(x-y\right)^2}{4}\ge\frac{\left(x+y\right)^2}{4}\)
Vậy \(2\ge\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^3}{4}\to8\ge\left(x+y\right)^3\to2\ge x+y.\)
\(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)
Gọi \(x_1\) là nghiệm còn lại của pt đã cho
Theo Vi-ét, ta có
\(\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1\left(3+2\sqrt{2}\right)=\dfrac{1}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1=\dfrac{1}{a\left(3+2\sqrt{2}\right)}=\dfrac{3-2\sqrt{2}}{a}\end{matrix}\right.\)
Thế pt dưới lên pt trên, ta được:
\(3+2\sqrt{2}+\dfrac{3-2\sqrt{2}}{a}=-\dfrac{b}{a}\\ \Leftrightarrow a\left(3+2\sqrt{2}\right)-3-2\sqrt{2}=-b-6\\ \Leftrightarrow\left(3+2\sqrt{2}\right)\left(a-1\right)=-b-6\)
Vì a,b hữu tỉ nên \(a-1;-b-6\) hữu tỉ
Mà \(3+2\sqrt{2}\) vô tỉ nên \(a-1=0\Leftrightarrow a=1\)
\(\Leftrightarrow-b-6=0\Leftrightarrow b=-6\)
Vậy \(\left(a;b\right)=\left(1;-6\right)\)
Nguyễn Hoàng Minh CTV, mk chưa học Vi-ét bạn à. Bn có thể giải cách khác dễ hiểu được ko??