Cho K là điểm cách đều ba cạnh của \(\Delta MNP\) . Biết \(\widehat{MNP}\)=400 . Tính \(\widehat{MKP}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét tam giác MPK có:
\(\widehat {PKM} + \widehat {MPK} + \widehat {KMP} = {180^o}\)
Xét tam giác NPK có:
\(\widehat {PKN} + \widehat {NPK} + \widehat {KNP} = {180^o}\)
Mà \(\widehat {KMP} = \widehat {KNP};\,\,\,\widehat {MPK} = \widehat {NPK}\)
Suy ra \(\widehat {MKP} = \widehat {NKP}\).
b)Xét hai tam giác MPK và NPK có:
\(\widehat {MPK} = \widehat {NPK}\)
PK chung
\(\widehat {MKP} = \widehat {NKP}\)
=>\(\Delta MPK = \Delta NPK\)(g.c.g)
c) Do \(\Delta MPK = \Delta NPK\) nên MP=NP (2 cạnh tương ứng)
=> Tam giác MNP cân tại P.
\(\Delta ABC = \Delta MNP\) nên \(AC = MP\)và \(\widehat {MPN} = \widehat {ACB}\).
Vậy \(MP = 4\)cm và \(\widehat {ACB} = 45^\circ \).
Ta có: \(\Delta ABC = \Delta MNP\) nên \(\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\).
Mà \(\widehat A + \widehat N = 125^\circ \)hay \(\widehat M + \widehat N = 125^\circ \). Tổng ba góc trong một tam giác bằng 180°.
Trong tam giác MNP:
\(\begin{array}{l}\widehat M + \widehat N + \widehat P = 180^\circ \\125^\circ + \widehat P = 180^\circ \\ \to \widehat P = 180^\circ - 125^\circ = 55^\circ \end{array}\)
Vậy số đo góc P là 55°.
Cho \(\Delta MNP\) \(\widehat{M}=45^0\), \(\widehat{N}=76^0\)
So sánh các cạnh của \(\Delta MNP\\ \)
xét △ MNP ta có
\(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
=> 450+760+\(\widehat{P}\) =1800
=> \(\widehat{P}=59^0\)
ta có
\(\widehat{N}>\widehat{P}>\widehat{M}\)
=> MP > MN>NP (qh góc và cạnh đối diện )
Xét tam giác ABC có:
\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 50^\circ + 60^\circ + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 70^\circ \end{array}\)
Xét tam giác ABC và tam giác MNP có:
\(\begin{array}{l}\widehat B = \widehat N = 60^\circ \\\widehat C = \widehat P = 70^\circ \end{array}\)
\( \Rightarrow \Delta ABC \backsim \Delta MNP\) (g-g).
a: Xet ΔIMN và ΔIKN có
NM=NK
góc MNI=góc KNI
NI chung
=>ΔIMN=ΔIKN
=>góc IKN=90 độ
b:Xet ΔNKA vuông tại K và ΔNMP vuông tại M có
NK=NM
góc N chung
=>ΔNKA=ΔNMP
=>NA=NP
=>ΔNAP cân tại N
mà NI là phân giác
nên NI vuông góc PA
K là giao 3 đường phân giác
\(\widehat{MKP}=180^0-\dfrac{1}{2}\left(\widehat{NMP}+\widehat{MPN}\right)\)
\(\widehat{NMP}+\widehat{MPN}=180^0-\widehat{MNP}=180^0-40^0=140^0\)
\(\widehat{MKP}=180^0-\dfrac{1}{2}.140^0=110^0\)