For 2(x-y)=5(y+z)=3(x+z)
Prove that: \(\dfrac{x-y}{4}=\dfrac{y-z}{5}\)
I hope you will help me!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x+y+z=18\)
\(\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}\)
\(\Rightarrow\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}and=\dfrac{\left(y+z\right)+\left(2+3\right)}{5}+\dfrac{\left(x+1\right)}{3}\)
\(\Leftrightarrow\dfrac{5+\left(y+z\right)}{5}+\dfrac{1+x}{3}\)
\(and\dfrac{5}{5}=1\)
\(\Rightarrow x=1-\dfrac{1}{3}=\dfrac{2}{3}\) vậy \(x=2\)
Ps: tự làm tiếp nha mình mới làm tới đó
a.
Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)
Thế vào \(2x+y-z=81\)
\(\Rightarrow2.5k+3k-4k=81\)
\(\Rightarrow9k=81\)
\(\Rightarrow k=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)
b.
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)
Thế vào \(5x-y+3z=124\)
\(\Rightarrow5.3k-5k+3.2k=124\)
\(\Rightarrow16k=124\)
\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)
c.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Thế vào \(xyz=810\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)
\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)
⇒\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)
⇒x=70;y=105;z=84
Sửa đề:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}\)
Dựa vào t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}=\dfrac{x+y+z}{x+y+x+z+z+y+\left(1+1-2\right)}=\dfrac{x+y+z}{x+x+y+y+z+z}=\dfrac{1\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{1}{2}\)\(x+y+z=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(2y=x+z+1\)
\(3y=\dfrac{1}{2}+1\)
\(y=\dfrac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(\Rightarrow2y=x+z+1\)
\(\Rightarrow3y=x+y+z+1\)
\(\Rightarrow3y=\dfrac{1}{2}+1\)
\(\Rightarrow y=\dfrac{1}{2}\)
Vậy...
Lời giải:
Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$
$\Rightarrow x=2018a; y=2019a; z=2020a$
$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$
Mặt khác:
$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$
Từ $(1); (2)$ ta có đpcm.
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
a: Áp dụng tính chất của DTSBN, ta được:
x/5=y/2=(x-y)/(5-2)=9/3=3
=>x=15; y=6
b: =>(x-3)/12=3/(x-3)
=>(x-3)^2=36
=>(x-9)(x+3)=0
=>x=9 hoặc x=-3
c; x/2=y/3
=>x/10=y/15
y/5=z/4
=>y/15=z/12
=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17
=>x=490/17; y=735/17; z=588/17
OK you. I will help
Giải
Chia mỗi hạng tử cho BCNN (3,5,2) = 30
\(\Rightarrow\)\(2\left(x-y\right)=5\left(y+x\right)=3\left(x+z\right)=\dfrac{2\left(x-y\right)}{30}=\dfrac{5\left(y+x\right)}{30}=\dfrac{3\left(x+z\right)}{30}=\dfrac{x-y}{15}=\dfrac{y+z}{6}=\dfrac{x+z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, Ta có:
\(\dfrac{x-y}{15}=\dfrac{x+z}{10}=\dfrac{x-y-x-z}{15-10}=\dfrac{y-z}{5}\left(1\right)\)
\(\dfrac{x+z}{10}=\dfrac{y+z}{6}=\dfrac{x+z-y-z}{10-6}=\dfrac{x-y}{4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{y-z}{5}=\dfrac{x-y}{4}\left(đpcm\right)\)
hope you understand. Remember to brainstorm before asking questions. NHEO