K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

Ta có: D; E lần lượt là trung điểm của OA; OB 

=> DE là đường trung bình của tam giác OAB 

=> DE = 1/2 AB 

Chứng minh tương tự: DF = 1/2 AC; EF = 1/2 BC 

=> DE + DF + EF = 1/2 AB + 1/2 AC + 1/2 BC = 1/2 (AB + AC + BC) = 1/2 . 20 = 10 cm

17 tháng 7 2016

A B C M N P I

17 tháng 7 2016

a,xét tam giác ABC có MA=MB                              

                              NA=NC

 Nên MN // BC Hay MI // BP; NI //PC  

Xét tam giác ABP có MI // BP; NA=NB Nên MI sẽ đi qua trung điểm AP hay AI=IP(T/C đường trung bình của tam giác)

b, ta có IM là đường trung bình của tam giác  ABP (theo CM trên )

\(\Rightarrow MI=\frac{1}{2}BP\)(1)

ta có IN là đường trung bình của tam giác APC (vì AN=AC; IN//PC)

\(\Rightarrow IN=\frac{1}{2}BC\) (2)

Mà BP=PC ( do p là trung điểm của BC)

từ (1);(2);(3) suy ra MI=IN

c, ta có PABC=AB+BC+AC=54 (cm)      (P là chu vi bạn nhé)

ta có NP =\(\frac{1}{2}AB\)do NA=NC;PC=PB nên NP là đường trung bình của tam giác ABC

tương tự ta có \(MN=\frac{1}{2}BC\)và \(MP=\frac{1}{2}AC\)

mặt khác PMNP=MN+NP+MP=\(\frac{1}{2}BC+\frac{1}{2}AB+\frac{1}{2}AC\)=\(\frac{1}{2}\left(BC+AB+AC\right)\)=\(\frac{1}{2}.54=27\)

Vậy chu vi tam giác  MNP là 27cm

25 tháng 6 2020

Làm

a) Xét hai tam giác vuông NMD và tam giác vuông NED có :

ND là cạnh chung

góc MND = góc END ( gt )

Do đó : tam giác NMD = tam giác NED ( cạnh huyền - góc nhọn )

b) Theo câu a) ta có : Tam giác NMD = tam giác NED 

=> +) NM = NE nên N thuộc đường trung trực của ME 

+) DM = DE nên D thuộc đường trung trực của của ME 

Vậy ND là đường trung trực của ME

Vì phần c của cậu sai đề ( nối B với F nhưng đề bài k có B )

Còn phần d thì chưa đủ ý để tìm đc  MD

HỌC TỐT

25 tháng 6 2020

                                              Bài giải

M N P D E

Bài bạn kia làm đúng rồi nha !

12 tháng 11 2021

a: Xét ΔQMD có

N là trung điểm của MQ

I là trung điểm của MD

Do đó: NI là đường trung bình của ΔQMD

Xét ΔABC có

D là trung điểm của AB

F là trung điểm của AC

Do đó: DF là đường trung bình của ΔABC

Suy ra: \(DF=\dfrac{BC}{2}\)

Xét ΔABC có

D là trung điểm của AB

E là trung điểm của BC

Do đó: DE là đường trung bình của ΔBAC

Suy ra: \(DE=\dfrac{AC}{2}\)

Xét ΔACB có

F là trung điểm của AC
E là trung điểm của BC

Do đó: FE là đường trung bình của ΔACB

Suy ra: \(FE=\dfrac{AB}{2}\)

Ta có: \(C_{DEF}=DF+DE+EF\)

\(=\dfrac{AB+AC+BC}{2}\)

\(=\dfrac{C_{ABC}}{2}\)