Bài 2. Cho tam giác MNP có D, E, F lần lượt là trung điểm của NP, PM, MN. Gọi O là giao điểm của MD và
EF.
a) Chứng minh O là trung điểm của MD và EF.
b) Cho chu vi tam giác DEF là 12cm. Tính chu vi tam giác MNP.
c) Gọi I là trung điểm MF. IE cắt PN tại K. Chứng minh DP = PK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: D; E lần lượt là trung điểm của OA; OB
=> DE là đường trung bình của tam giác OAB
=> DE = 1/2 AB
Chứng minh tương tự: DF = 1/2 AC; EF = 1/2 BC
=> DE + DF + EF = 1/2 AB + 1/2 AC + 1/2 BC = 1/2 (AB + AC + BC) = 1/2 . 20 = 10 cm
a,xét tam giác ABC có MA=MB
NA=NC
Nên MN // BC Hay MI // BP; NI //PC
Xét tam giác ABP có MI // BP; NA=NB Nên MI sẽ đi qua trung điểm AP hay AI=IP(T/C đường trung bình của tam giác)
b, ta có IM là đường trung bình của tam giác ABP (theo CM trên )
\(\Rightarrow MI=\frac{1}{2}BP\)(1)
ta có IN là đường trung bình của tam giác APC (vì AN=AC; IN//PC)
\(\Rightarrow IN=\frac{1}{2}BC\) (2)
Mà BP=PC ( do p là trung điểm của BC)
từ (1);(2);(3) suy ra MI=IN
c, ta có PABC=AB+BC+AC=54 (cm) (P là chu vi bạn nhé)
ta có NP =\(\frac{1}{2}AB\)do NA=NC;PC=PB nên NP là đường trung bình của tam giác ABC
tương tự ta có \(MN=\frac{1}{2}BC\)và \(MP=\frac{1}{2}AC\)
mặt khác PMNP=MN+NP+MP=\(\frac{1}{2}BC+\frac{1}{2}AB+\frac{1}{2}AC\)=\(\frac{1}{2}\left(BC+AB+AC\right)\)=\(\frac{1}{2}.54=27\)
Vậy chu vi tam giác MNP là 27cm
Làm
a) Xét hai tam giác vuông NMD và tam giác vuông NED có :
ND là cạnh chung
góc MND = góc END ( gt )
Do đó : tam giác NMD = tam giác NED ( cạnh huyền - góc nhọn )
b) Theo câu a) ta có : Tam giác NMD = tam giác NED
=> +) NM = NE nên N thuộc đường trung trực của ME
+) DM = DE nên D thuộc đường trung trực của của ME
Vậy ND là đường trung trực của ME
Vì phần c của cậu sai đề ( nối B với F nhưng đề bài k có B )
Còn phần d thì chưa đủ ý để tìm đc MD
HỌC TỐT
a: Xét ΔQMD có
N là trung điểm của MQ
I là trung điểm của MD
Do đó: NI là đường trung bình của ΔQMD
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{BC}{2}\)
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của BC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: \(DE=\dfrac{AC}{2}\)
Xét ΔACB có
F là trung điểm của AC
E là trung điểm của BC
Do đó: FE là đường trung bình của ΔACB
Suy ra: \(FE=\dfrac{AB}{2}\)
Ta có: \(C_{DEF}=DF+DE+EF\)
\(=\dfrac{AB+AC+BC}{2}\)
\(=\dfrac{C_{ABC}}{2}\)