K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

a. Q(x)+P(x)=(ax^4-\(\dfrac{1}{5}\)x+x^3-2x+10)+(3x^4-x+x^3-x^2+5)

=ax^4-\(\dfrac{1}{5}\)x+x^3-2x+10+3x^4-x+x^3-x^2+5

=3ax^4+2x^3-3x-x^2+\(\dfrac{74}{5}\)

6 tháng 4 2018

Giúp em ý b được không ạ ??

4 tháng 4 2018

Các bạn ơi giúp mình với !!! mình cần gấp mà HUHU

7 tháng 4 2018

mk chịu

a: \(\Leftrightarrow2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)

=>5x=22

hay x=22/5

b: \(\Leftrightarrow24x^2+16x-9x-6-4x^2-16x-7x-28=10x^2-2x+5x-1\)

\(\Leftrightarrow20x^2-16x-34=10x^2+3x-1\)

\(\Leftrightarrow10x^2-19x-33=0\)

hay \(x\in\left\{3;-\dfrac{11}{10}\right\}\)

c: \(\Leftrightarrow x^3+2x^2-5x-10+5x=2x^2+17\)

\(\Leftrightarrow x^3+2x^2-10-2x^2-17=0\)

=>x3=27

=>x=3

d: \(\Leftrightarrow x^3+1-x^3+3x=15\)

=>3x=14

hay x=14/3

NV
5 tháng 10 2019

Sử dụng định lý Bezout:

a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

b/ \(g\left(x\right)=0\Rightarrow x=-1\)

\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)

Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a

c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)

\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)

Thay \(x=1\Rightarrow a+b=-2\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)

d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0 1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\) e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\) g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\) i,...
Đọc tiếp

Câu 3: Giải các phương trình sau bằng cách đưa về dạng ax+b=0

1. a, \(\frac{5x-2}{3}=\frac{5-3x}{2}\); b, \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)

c, \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\); d, \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)

e, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\); f, 4 (0,5-1,5x)=\(\frac{5x-6}{3}\)

g, \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\); h, \(\frac{x+4}{5}.x+4=\frac{x}{3}-\frac{x-2}{2}\)

i, \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\); k, \(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)

m, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\); n, \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right).\frac{1}{3}\left(x+2\right)\)

p, \(\frac{x}{3}-\frac{2x+1}{6}=\frac{x}{6}-x\); q, \(\frac{2+x}{5}-0,5x=\frac{1-2x}{4}+0,25\)

r, \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\); s, \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{6}\)

t, \(\frac{2x-8}{6}.\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\); u, \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{3}+\frac{2x-1}{12}\)

v, \(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\); w, \(\frac{2x-\frac{4-3x}{5}}{15}=\frac{7x\frac{x-3}{2}}{5}-x+1\)

17

Đây là những bài cơ bản mà bạn!

29 tháng 3 2020

bạn ấy muốn thách xem bạn nào đủ kiên nhẫn đánh hết chỗ này

19 tháng 4 2020
https://i.imgur.com/wgXaoMx.jpg
20 tháng 4 2020

a)

\(\left(4x-10\right)\cdot\left(24+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{24}{5}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{5}{2};-\frac{24}{5}\right\}\)

b)

\(\left(2x-5\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{5}{2};\frac{2}{3}\right\}\)

c)

\(\left(2x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{1}{2};-\frac{1}{3}\right\}\)

d)

\(x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(S=\left\{0;\frac{1}{2}\right\}\)

e) \(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\)

Do \(x^2\ge0\) Nên \(x^2+4>0\)

\(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{5}\\x=1\end{matrix}\right.\)

Vậy \(S=\left\{-\frac{3}{5};1\right\}\)

....... Còn lại cứ cho mỗi thừa số = 0 rồi tìm x như bình thường thôi bạn

20 tháng 4 2020

1. (4x - 10)(24 + 5x) = 0

\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-24}{5}\end{matrix}\right.\)

Vậy S = {\(\frac{5}{2}\); \(\frac{-24}{5}\)}

2. (2x - 5)(3x - 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy S = {\(\frac{5}{2}\); \(\frac{2}{3}\)}

3. (2x - 1)(3x + 1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{3}\end{matrix}\right.\)

Vậy S = {\(\frac{1}{2}\); \(\frac{-1}{3}\)}

4. x(x2 - 1) = 0

\(\Leftrightarrow\) x(x - 1)(x + 1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy S = {0; 1; -1}

5. (5x + 3)(x2 + 4)(x - 1) = 0

VÌ x2 + 4 > 0 với mọi x nên

\(\Rightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)

Vậy S = {\(\frac{-3}{5}\); 1}

6. (x - 1)(x + 2)(x + 3) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)

Vậy S = {1; -2; -3}

7. (x - 1)(x + 5)(-3x + 8) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\\-3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)

Vậy S = {1; -5; \(\frac{8}{3}\)}

Chúc bn học tốt!!

14 tháng 8 2018

Dạng 1:

a) $4x+9=4x+\frac{9}{4}.4=4(x+\frac{9}{4}\Rightarrow$ Nghiệm là $-\frac{9}{4}$

b) $-5x+6=-5x+(-5).(-\frac{6}{5})=-5(x-\frac{6}{5})\Rightarrow$ Nghiệm là $\frac{6}{5}$

c) $7-2x=-2x+7=-2x+(-2).(-\frac{7}{2})=-2(x-\frac{7}{2})\Rightarrow$ Nghiệm là $\frac{7}{2}$

d) $2x+5=2x+2.\frac{5}{2}=2.(x+\frac{5}{2})\Rightarrow$ Nghiệm là $-\frac{5}{2}$

e) $2x+6=2x+2.3=2(x+3)\Rightarrow$ Nghiệm là -3

g) $3x-\frac{1}{4}=3x-3.(\frac{1}{12})=3(x-\frac{1}{12})\Rightarrow$ Nghiệm là $\frac{1}{12}$

h) $3x-9=3x-3.3=3(x-3)\Rightarrow$ Nghiệm là 3

k) $-3x-\frac{1}{2}=-3x-3.(\frac{1}{6})=-3(x+\frac{1}{6})\Rightarrow$ Nghiệm là $-\frac{1}{6}$

m) $-17x-34=-17x-17.2=-17(x+2)\Rightarrow$ Nghiệm là -2

n) $2x-1=2x+2.(-\frac{1}{2})=3(x-\frac{1}{2})\Rightarrow$ Nghiệm là $\frac{1}{2}$

q) $5-3x=-3x+5=-3x+(-3).(-\frac{5}{3})=-3(x-\frac{5}{3})\Rightarrow$ Nghiệm là $\frac{5}{3}$

p) $3x-6=3x+3.(-2)=3(x-2)\Rightarrow$ Nghiệm là 2

20 tháng 8 2018

Cảm ơn nhiều nhiều nhiều :3

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

P(x)+Q(x)+R(x) = \(9{x^4} - 3{x^3} + 5x - 1 - 2{x^3} - 5{x^2} + 3x - 8 - 2{x^4} + 4{x^2} + 2x - 10\)

\(\begin{array}{l} = (9{x^4} - 2{x^4})+( - 3{x^3} - 2{x^3})+( - 5{x^2} + 4{x^2}) +( 5x + 3x + 2x)+( - 8 - 10 - 1)\\ = 7{x^4} - 5{x^3} - {x^2} + 10x - 19\end{array}\)

P(x)-Q(x)-R(x) = \(9{x^4} - 3{x^3} + 5x - 1 + 2{x^3} + 5{x^2} - 3x + 8 + 2{x^4} - 4{x^2} - 2x + 10\)

\(\begin{array}{l} = (9{x^4} + 2{x^4})+( - 3{x^3} + 2{x^3} )+ (5{x^2} - 4{x^2}) + (5x - 3x - 2x) + (10 - 1 + 8)\\ = 11{x^4} - {x^3} + {x^2} + 17\end{array}\)