Cho tam giác ABC có góc B=C.Gọi Ax là tia phân giác của góc ngoài đỉnh A.Kẻ AH vuông góc với BC (H thuộc BC).Chứng minh rằng :
a, Ax song song với BC
b, AH là tia phân giác của góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
a) Xét \(\Delta\)ABH và \(\Delta\)ACH có :
AB = AC(vì \(\Delta\)ABC cân ở A)
\(\widehat{B}=\widehat{C}\)( \(\Delta\)ABC cân ở A)
=> \(\Delta\)ABH = \(\Delta\)ACH(cạnh huyền - góc nhọn)
b) Có \(\Delta\)ABH = \(\Delta\)ACH(cmt)
=> \(\widehat{BAH}=\widehat{CAH}\)
=> AH là tia phân giác của \(\widehat{BAC}\)
Hình vẽ :