K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

thay x=-1 vào đa thức f(x) ta có :

f(x)= 5(-1)2 - 7(-1) +2

= 5 + 7 + 2

= 14

Vậy x = -1 không phải nghiêm của đa thức f(x).

15 tháng 10 2018

ko  biet ban 

15 tháng 10 2018

\(a)\)\(5x^3-7x^2+4x-2=0\)

\(\Leftrightarrow\)\(\left(5x^3-5x^2\right)-\left(2x^2-4x+2\right)=0\)

\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(\sqrt{2}x-\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\)\(5x^2\left(x-1\right)-2\left(x-1\right)^2=0\)

\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(2x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(5x^2-2x+2\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x^2-2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\5x^2-2x+2=0\end{cases}}}\)

Vậy \(x=1\) là một trong các nghiệm của đa thức \(f\left(x\right)\)

Hok tốt nhé eiu :> 

a: Đặt f(x)=0

\(\Leftrightarrow x-2x^2+2x^2-x+4=0\)

=>4=0(loại)

b: Đặt g(x)=0

\(\Leftrightarrow x^2-5x-x^2-2x+7x=0\)

=>0x=0(luôn đúng)

c: Đặt H(x)=0

\(\Leftrightarrow x^2-x+1=0\)

Δ=1-4=-3<0

DO đó: PTVN

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

7 tháng 5 2018

 ta có: \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(4x^3-7x^2+3x-12\right)+\left(-2x^3+2x^2+12+5x^2-9x\right)\)

                                 \(=\left(4x^3-2x^3\right)+\left(-7x^2+2x^2+5x^2\right)-\left(9x-3x\right)+\left(12-12\right)\)

                                  \(=-6x\)

Cho P(x) + Q(x) = 0

=> -6x = 0

x = 0

KL: x = 0 là nghiệm của P(x) + Q(x)

7 tháng 5 2018

Ta có :P(x)+Q(x)= 4x3-7x2+3x-12+(-2x3+2x2+12+5x2-9x)

=2x3-10x2-6x

Nghiệm của ĐT P(x)+Q(x) là giá trị thỏa mãn P(x)+Q(x)=0

<=> 2x3-10x2-6x=0

<=>2x(x2-5x-3)=0

<=>2x=0(*) hoặc x2-5x -3=0(**)

Từ (*) ta có : 2x=0 => x=0(1)

Từ (**) ta có : x2-5x-3=0 => x(x-5-3)=0

=>x=0 hoặc x-5-3=0 => x=0 hoặc x=8(2)

Từ (1) và (2) => x=0 và x=8 là nghiệm của P(x)+Q(x)

23 tháng 6 2020

a) A(x) = f(x) + g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) + ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )

= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 + 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x

= ( 2x^3 - 4x^3 + 5x^3 ) + ( 3x - 9x ) + ( 1/2 + 0,2 ) + ( -5x^4 + 3x^4 ) - 7x^2

= 3x^3 - 6x + 0,7 - 2x^4 - 7x^2

B(x) = f(x) - g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) - ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )

= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 - 3x^4 - 0,2 + 7x^2 - 5x^3 + 9x

= ( 2x^3 - 4x^3 - 5x^3 ) + ( 3x + 9x ) + ( 1/2 - 0,2 ) + ( -5x^4 - 3x^4 ) + 7x^2

= -7x^3 + 12x + 0,3 -8x^4 + 7x^2

31 tháng 3 2017

a) \(f\left(x\right)=x^2+7x-8=0\)

\(\Leftrightarrow f\left(x\right)=x^2-x+8x-8=0\)

\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)+\left(8x-8\right)=0\)

\(\Leftrightarrow f\left(x\right)=x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+8\right)=0\)

\(\Rightarrow x-1=0\) hoặc  \(x+8=0\)

Nếu \(x-1=0\Rightarrow x=1\) 

Nếu  \(x+8=0\Rightarrow x=-8\)

Vậy đa thức f(x) có nghiệm là 1 và -8

b) \(k\left(x\right)=5x^2+9x+4=0\)

\(\Leftrightarrow k\left(x\right)=5x^2+5x+4x+4=0\)

\(\Leftrightarrow k\left(x\right)=\left(5x^2+5x\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow k\left(x\right)=5x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow k\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\)

\(\Rightarrow x+1=0\) hoặc \(5x+4=0\)

Nếu \(x+1=0\Rightarrow x=-1\)

Nếu \(5x+4=0\Rightarrow x=-\frac{4}{5}\)

Vậy đa thức k(x) có nghiệm là -1 và -4/5

13 tháng 4 2018

\(F\left(x\right)=3x-6;x=\dfrac{6}{3}=2\)

\(H\left(x\right)=-5x+30;x=-\dfrac{30}{5}=-6\)

\(G\left(x\right)=\left(x-3\right)\left(16-4x\right)\Leftrightarrow\left[{}\begin{matrix}x-3=0;x=3\\16-4x=0;x=4\end{matrix}\right.\)

\(K\left(x\right)=x^2-81=\left(x-9\right)\left(x+9\right)\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=9\end{matrix}\right.\)

\(M\left(x\right)=x^2+7x-8=\left(x-1\right)\left(x+8\right);\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\)

\(N\left(x\right)=5x^2+9x+4\)

\(N\left(x\right)=5x^2+5x+4x+4=5x\left(x+1\right)+4\left(x+1\right)\)

\(N\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{4}{5}\end{matrix}\right.\)