Cho đa thức F(x) = ax + b. Xác định a, b biết F(1) = 3, F(-2) = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
F (x) = ax +b
Xét 2 trường hợp :
+> F (x) = 3
a .1 +b = 3
=> a +b = 3 (1)
+> F (-2)=2
a.(-2) + b = 2
=> -2a +b = 2 (2)
Từ ( 1 ) và (2) =>
(a-b) + (-2a +b ) = 3 + 2
=> -1a = 5
=> a = 5
=> b = -2
\(F\left(1\right)=a+b=3;F\left(-2\right)=-2a+b=2\)
\(\Rightarrow a=\dfrac{1}{3};b=\dfrac{8}{3}\)
a) Ta có a.1/3 - 1/2 = 0
=> a.1/3 = 1/2
=> a = 3/2
Vậy a = 3/2
b) Ta có : f(1) = a.1 + b = a + b = -3
=> a + b = -3 (1)
Lại có f(2) = a.2 + b = 2 x a + b = 7
=> 2 x a + b = 7 (2)
Khi đó 2 x a + b - (a + b) = 7 - (-3)
=> 2 x a - a = 10
=> a = 10
=> b = -13
Vậy a = 10 ; b = -13
a ) Ta có : \(a\cdot\frac{1}{3}-\frac{1}{2}=0\)
\(\Rightarrow a\cdot\frac{1}{3}=\frac{1}{2}\)
\(\Rightarrow a=\frac{3}{2}\)
Vậy \(a=\frac{3}{2}\)
b ) Ta có : \(f\left(1\right)=a\cdot1+b=a+b=-3\)
\(\Rightarrow a+b=-3\)(1)
Lại có : \(f\left(2\right)=a\cdot2+b=2\cdot a+b=7\)
\(\Rightarrow2\cdot a+b=7\)(2)
Khi đó : \(2\cdot a+b-\left(a+b\right)=7-\left(3\right)\)
\(\Rightarrow2\cdot a-a=10\)
\(\Rightarrow a=10;b=-13\)
Vậy ...
f(1)=3 suy ra a+b=-3 (1)
f(2)=3 suy ra 2a+b=7 (2)
từ (1) và (2) suy ra a=10;b=-13
Ta có :
\(f\left(x\right)=ax+b\)
+) \(f\left(1\right)=3\)
\(\Leftrightarrow a.1+b=3\)
\(\Leftrightarrow a+b=3\)\(\left(1\right)\)
+) \(f\left(-2\right)=2\)
\(\Leftrightarrow a.\left(-2\right)+b=2\)
\(\Leftrightarrow-2a+b=2\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\left(a-b\right)+\left(-2a+b\right)=3+2\)
\(\Leftrightarrow-1a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow b=-2\)
Vậy ....
tại s lại là ( a - b ) mà k pk là a + b ạ ? a + b mới = 3 mà cậu